Denso-dependência em População Estruturada - Roteiro em Planilhas
O modelo básico de matrizes de transição não inclui nenhum tipo de restrição ao aumento da população natural. Portanto, esse modelo pressupõe que os recursos são ilimitados e que a população cresce (ou decresce) a uma taxa constante. Sabemos, entretanto, que as populações são limitadas por muitos mecanismos (por exemplo, interação com populações de outras espécies, limitação de recursos, limitação de dispersão). Uma forma pela qual as populações são limitadas está relacionada à sua própria densidade. Esses mecanismos de regulação associados à própria densidade da população são denominados de denso-dependência: modificações nas taxas vitais das populações associadas à variações da própria densidade.
Denso-dependência em uma população de cactos
Nesse exercício vamos relaxar a premissa de crescimento indefinido incluindo um efeito de denso-dependência em uma das probabilidades de transição: a transição no estado plântulas do cactus Escobaria robbinsorum (exemplo no cap. 5 de Gurevitch et al 2009, uma matriz de 3 estágios de vida).
Vamos usar a expressão de freio do conhecido modelo de crescimento logístico, que vai atuar na probabilidade de permanência das plântulas (elemento $a_{2,1}$ da matriz). Para isto, esta probabilidade de transitar no tempo $t+1$ passa a ser a função
$$ a_{2,1}= a_{max} (1- \frac{N_t}{K}) $$ 1)
Onde $a_{max}$ é o valor máximo da probabilidade de transição da estado 1 para 2, $N_t$ o tamanho da população no tempo $t$, e $K$ a capacidade suporte da população. Quanto mais próximo o tamanho populacional estiver de $K$, menor a probabilidade de transição de plântulas a jovem, portanto, maior sua mortalidade.
Inserindo denso-dependência na planilha
- 1. Abra a planilha DenDep do Arquivo de dados do cactus Escobaria robbinsorum(Gurevitch et al 2009). Nas células
B4eB5estão os parâmetros de denso-dependência:- $a_{max} = $0,33
- $K = 50
- 2. Calcule o tamanho da população no tempo $t$: para isso inclua na célula
G15a fórmula=SOMA(G12:G14)(em inglêsSUM).
- 3. Na célula
B6inclua a fórmula para cálculo da probabilidade de transição dependente da densidade:=B4*(1-G15/B5)
- 4. Inclua na célula
B7uma condição usando a funçãoSE(em inglêsIF) para que a probabilidade de permanência não caia abaixo de zero:=SE(B6<0;0;B6).
- 5. Direcione o resultado da célula
B7para a matriz de transição. Para isso inclua na célulaC13a fórmula=B7.
Sua planilha deve ficar assim:
Se quiser conferir, veja a planilha com as fórmulas aqui.
Projeção dos tamanhos populacionais
Agora você deve realizar, nas células H12:H14, a multiplicação da matriz de transição (células $C$12:$E$14) pelo vetor de abundâncias no tempo $t$ (células G12:G14), seguindo as mesmas orientações do roteiro modelo básico de matrizes de transição. Isso vai resultar no vetor de abundâncias no tempo $t+1$. Agora basta reiterar esses cálculos da seguinte forma:
- 1. Copie (usando a opção de “cópia especial” apenas de “valores”. Não copie as fórmulas!!) os valores das células
H12:H14sobre as célulasG12:G14.
- 2. Copie os mesmos valores que foram colocados nas células
G12:G14também para a coluna t2 (célulasC18:C20).
- 3. Note que, ao substituir os números nas células
G12:G14, as fórmulas nas célulasH12:H14irão atualizar seus valores e, então, você projetou a população mais um passo de tempo. Repita os passos 1 e 2 acima e, a cada substituição, vá colando os valores obtidos também nas colunas seguintes (t3, t4, t5, t6, etc) das célulasD18:D20. Prossiga até que o valor de lambda (que está sendo calculado automaticamente na linha 23) estabilize.
- 4. Faça gráficos do número de indivíduos em cada estágio de vida e no total em função do tempo.
Exercício: Palmito sustentável
Em nosso exercício com extração do palmito sem denso-dependência, usamos um modelo simples para avaliar a sustentabilidade da extração.
Entretanto, os resultados podem ser pouco realistas. Por exemplo, no modelo original: (1) não havia nenhuma limitação ao crescimento da população de palmito, (2) as taxas de transição não variam de um ano a outro; (3) o manejo não tem nenhum impacto nas taxas de transição.
O desafio aqui é criar um modelo mais realista, incluindo dependência da densidade. Use a matriz de transição para uma população de palmito (Euterpe edulis Mart.) na Reserva de Santa Genebra, Campinas (Frenckleton et al. 2002), que está na planilha palmitos2011.xls. Utilizando o mesmo procedimento do exercício anterior com o cactus:
- Escolha uma das taxas de transição para modelar a denso-dependencia na população de palmito e justifique a escolha;
- Produza cenários de extração com denso-dependência para a população de palmito;
- Faça projeções e sugestões para o manejo sustentável do palmito.
Para saber mais
Gotelli, N. J. 2007. Ecologia. Cap.2 - Crescimento Logistico de Populações. Pp. 26-48. Ed. Planta.
Gurevitch, J, Scheiner, S.M, Fox, G.A. 2009. Ecologia Vegetal. Cap. 5 - Ed. Artmed, São Paulo.
Silva Matos, D.M. et al. 1999. THE ROLE OF DENSITY DEPENDENCE IN THE POPULATION DYNAMICS OF A TROPICAL PALM. Ecology, 80(8), 1999, pp. 2635–2650
planilha uma_população população_estruturada exercício
