Ferramentas do usuário

Ferramentas do site


ecovirt:roteiro:pad_spat

Estrutura Espacial

Nesse tutorial vamos tratar do reconhecimento de um dos padrões mais básicos de uma população de plantas: se os indivíduos estão espacialmente mais próximos ou mais afastados do que seria esperado se simplesmente fossem distribuídos ao acaso 1).

Objetivo

26_fha_rshow_terra3.jpg Investigar o padrão espacial em populações de plantas e discutir quais processos subjacentes poderiam gerar os padrões observados. Antes de tudo, porém, precisamos definir alguns conceitos.

Contexto

Um padrão espacial é uma estrutura previsível que pode ser detectada e quantificada. Em geral, considera-se que um padrão é uma estrutura diferente do aleatório, entretanto, no caso dos padrões espaciais (e outros também) o padrão aleatório também pode ser considerado um padrão, afinal tem 26_fha_rshow_terra5.jpgalguma previsibilidade 2) e pode ser detectado e quantificado. Existem diversas métricas utilizadas para descrever a distribuição de indivíduos que são capazes de diferenciar, com maior ou menor eficiência, os três padrões espaciais básicos: aleatório, homogêneo e agregado.

Padrões Espaciais

  • aleatório: a distribuição dos indivíduos não é diferente do que seria esperado por uma distribuição ao acaso;
  • regular ou homogêneo: os indivíduos estão regularmente espaçados. É chamado também de padrão disperso, pois está relacionado ao maior distanciamento possível entre indivíduos;
  • agregado: os indivíduos estão mais próximos do que esperado por um padrão aleatório, formando agrupamentos.

Detectar um padrão espacial pode ser importante tanto para entender os mecanismos que geram o padrão, como para decidir o método e a escala de amostragem e planejar o manejo de uma população. Algumas propriedades desejáveis de uma medida do padrão espacial são:

  • diferenciar claramente o padrão;
  • não ser afetada por: tamanho da amostra, densidade populacional ou pela variação no tamanho e na forma da amostra;
  • ser estatisticamente tratável: passível de calcular a incerteza do valor e testar a diferenças entre amostras.

Para essa prática usaremos uma estimativa de aleatoriedade de pontos chamada K-Ripley (e sua padronização chamada L-Ripley). Primeiro iremos utilizar dados de distribuição simulados com diferentes padrões e em seguida utilizar a mesma técnica para detectar o padrão espacial em uma população natural.

Roteiro

Padrões multiescala

pattern.jpg

Nesta prática vamos quantificar o padrão espacial usando um método multiescala. Os métodos de multiescala permitem, com uma única métrica, avaliar como o padrão espacial varia com a escala. Iremos descrever o padrão espacial para o conjunto total de indivíduos em uma população em uma área delimitada e iremos avaliar o padrão desde a escala da vizinhança dos indivíduos até a escala mais ampla da população.

mandelbrot-fractals-o.gif

Para a prática vamos utilizar um programinha chamado Programita, feito pelo pesquisador Thorsten Wiegand para quantificar o padrões espaciais usando medidas multiescala baseadas em distância entre pontos. Para baixar o manual do Programita clique

aqui.

No Programita existem várias medidas que podem ser usadas para calcular o padrão espacial, vamos usar duas delas: o K de Ripley (na verdade, vamos usar sua padronização L-Ripley) e o O-ring.

Ambas são abordagens baseadas em pontos, que utilizam o cálculo de distâncias ponto a ponto dentro de uma área delimitada. Essas medidas podem ser usadas para análises univariadas, ou seja, identificando o padrão para uma única classe de pontos, ou para análises bivariadas, que identifica o padrão entre dois tipos de pontos. As análises bivariadas podem ser usadas no contexto de populações para verificar se indivíduos de um dado estágio estão espacialmente associados a outro, ou no contexto de estruturação de comunidades para analisar se há atração ou repulsão na ocorrência de uma espécie em relação a outra.

K de Ripley

ripleys_game.jpg

O K de Ripley é uma medida da densidade média ao redor de cada ponto. Para cada ponto na área de estudo é calculada a densidade no interior de um círculo de raio r centrado no ponto (área cinza da figura). Em seguida, calcula-se uma média desses valores obtidos para todos os pontos.

lripley.jpg Figura: Implementação da estatística L de Ripley: contagem do número de pontos distantes de i no interior do círculo de raio r. Extraído de Wiegand & Moloney (2004).

A operação é repetida para diferentes valores de r, que permite avaliar de maneira contínua o valor de K para diferentes escalas.

$$ K_{(r)} = \frac{\sum_{i\neq{j}}^{i}I({d_{ij}<r})}{n}\frac{1}{\lambda}$$

Onde:

  • $d_{ij}$ é a distância do ponto $i$ ao ponto $j$;
  • $I({d_{ij}<r})$ função indicadora, sendo 1 se o ponto $j$ está a uma distância menor que $r$ do ponto $i$ e 0 se o ponto $j$ está fora desse raio $r$ ao redor de $i$;
  • $n$ é o número de pontos total;
  • $\lambda$ é a densidade dos pontos.

A interpretação visual do K não é muito intuitiva por ser uma função cumulativa associada à área do círculo relativo a r. O L de Ripley, por sua vez, é a padronização deste valor:

$$ L_{(r)}= (\sqrt{\frac{K_{(r)}}{\pi}}-r) $$

Esta transformação faz com que o valor de L para uma distribuição completamente aleatória seja sempre 0, para uma distribuição agregada L > 0 e para uma distribuição homogênea L < 0.

O-ring (O(r))

Onion ring to rule them all

A estatística O-ring é similar ao L de Ripley, mas baseada em um anel, ao invés de um círculo. É medida pela contagem do número de pontos em um anel de raio r e largura fixa. Da mesma forma que o L-Ripley,também são calculadas as intensidades para diferentes tamanhos de anel, mantendo a largura fixa.

o-ring.jpeg Figura: Implementação da estatística O-ring: contagem do número de pontos distantes de i ao longo do raio r. Extraído de Wiegand & Moloney (2004).

Logo, definimos $O(r)$ como: $$ O_{(r)} = L_{(r)} - L_{(r-l)}$$

Onde:

  • $r -l$ : é o raio menos a largura do anel 3)

Na completa aleatoriedade espacial (CAE) $O(r) = \lambda$ (intensidade do padrão), quando o padrão é agregado $O(r) > \lambda$ e quando o padrão é homogêneo $O(r) < \lambda$.

As medidas $K_{(r)}$, $L_{(r)}$ ou $O_{(r)}$ apresentam soluções analíticas teóricas para o padrão definido como processo Poisson ou Completa Aleatoriedade Espacial (CAE). Ou seja, quando a distribuições dos pontos no espaço estudado não é diferente do esperado pelo acaso. Para uma dada densidade de pontos conseguimos calcular esses valores teóricos para qualquer raio. Dessa forma, para interpretar o padrão espacial dos pontos observados precisamos:

  • calcular os valores observados e o teóricos para CAE;
  • comparar esses valores;
  • definir quando uma diferença é ou não aceitável para afirmar que o padrão é diferente do aleatório;

Para os dois primeiros tópicos acima, usamos as fórmulas e calculamos os valores. Para tirar a subjetividade do terceiro, podemos calcular intervalos de confiança ou gerar envelopes4) de confiança por simulações computacionais, para definir objetivamente o que é algo diferente do esperado para a CAE.

Padrões de Pontos Simulados

Atividade 1:

escala.jpg Qual processo gerou o padrão de pontos?

Instruções gerais

  • 1. baixe os arquivos relacionados ao padrão espacial 01 OU 02 (você escolhe) na mesma pasta em que o Programita esteja instalado. Caso abra uma página mostrando os dados, clique no link com o botão direito do mouse para salvar o arquivo. Salve no formato “.dat”:
  • caso não tenha o programita instalado, baixe o programita aqui na mesma pasta do arquivo de dados;
  • descompacte o arquivo programita.zip;
  • clique 2x para abrir o arquivo executável ProgramitaJulio2006.exe.

Bem vindo(a) ao Programita! Agora vamos abrir os dados que iremos trabalhar.

O Programita aceita arquivos de texto das extensões .dat e .asc. São arquivos em formato de texto, separados por tabulação (ou espaço). Os arquivos de dados possuem a seguinte estrutura:

A primeira linha contém informações gerais sobre o arquivo de dados:

  • valor mínimo da coordenada x;
  • valor máximo da coordenada x;
  • valor mínimo da coordenada y;
  • valor máximo da coordenada y; e
  • número total de indivíduos

A partir da segunda linha, estão os dados dos pontos que serão analisados:

  • primeira coluna com as coordenadas x dos indivíduos;
  • segunda coluna com as coordenadas y dos indivíduos;
  • no caso de dados univariados, a terceira coluna será sempre 1 e a quarta coluna sempre 0.
  • no caso de dados bivariados a terceira coluna tem os pontos dos indivíduos tipo A (adultos, por exemplo) identificados por 1 e do tipo B (jovens, por exemplo) identificados por 0 ;
  • ainda no caso de dados bivariados, a quarta coluna tem os pontos dos indivíduos do tipo A identificados por 0 e do tipo B identificados por 1 .

ex_dados.png Fig. Exemplo de arquivo .dat no formato de uso no Programita.

Padrão Univariado: todos os pontos

  • 1. Verifique se na janela Input data file estão aparecendo os arquivos .dat. Caso não esteja, verifique se o arquivo executável do programita está na mesma pasta dos arquivos .dat.

Dependendo da configuração do seu navegador o arquivo salvo pode aparecer com uma extensão diferente (p.ex. “.bin”). Nesse caso é preciso mudar a extensão do arquivo para “.dat”.

  • 2. no menu à esquerda selecione o arquivo padrao“0X”all.dat. No caso X vai ser 1 ou 2 dependendo da sua escolha;

arquivos.png Figura. Janela de entrada de dados do Programita.

  • 3. Em How your data are organized selecione List
  • 4. Vamos começar usando o L de Ripley então em Which method to use selecione Circle ou Ripley (a depender da versão que foi baixada)
  • 5. Em Select modus of data selecione List with coordinates no grid. Ao selecionar esta opção aparecerá uma janela com a opção Select a new cell size:

cell_size.png.

  • 6. Caso tenha menos de 500 pontos, altere o proposed cell size para 1. Caso contrário deixe no padrão do programa.
  • 7. Feito tudo isso, você deve estar assim:

programita.jpg

  • 8. Você pode agora respirar fundo e apertar o botão Calculate index;

A saída visual do programa é um mapa onde os indivíduos aparecem em pontos vermelhos, seguindo as coordenadas do arquivo de dados. O gráfico no canto superior direito corresponde ao valor do L-Ripley para diferentes raios. Nessa saída gráfica é possível analisar como o padrão espacial varia de acordo com a escala. Para dados univariados, ignore o gráfico inferior.

Porém, olharmos apenas o formato da curva não é suficiente para afirmamos em que escalas a população é agregada. Para isso precisamos comparar o resultado observado com o padrão que seria gerado pela distribuição dos pontos completamente aleatório. Esse modelo nulo é chamado de completa aleatoriedade espacial. Para gerar esse modelo por simulação é necessário recolocar o mesmo número de pontos de forma aleatória na mesma área. Se fizermos isso, muitas e muitas vezes, é possível gerar um envelope de confiança (similar ao intervalo de confiança) no qual o padrão de distribuição aleatória é encontrado. Se os valores observados estão contidos dentro do envelope podemos concluir que nosso padrão não é diferente do aleatório.

Para fazer isso você deve:

  • 9. selecionar a opção Calculate confidence limits e;
  • 10. na janela Select a null model selecionar o modelo nulo Pattern 1 and 2 random;
  • 11. verifique se sua tela está como a figura e clique novamente no botão Calculate index.

null_model.png

Caso a simulação esteja demorando muito

  • aperte o botão de stop ao lado do Calculate index;
  • selecione outro “modus of data” e em seguida selecione novamente list with coordenate,…;
  • na janela Select a new cell size, altere proposed cell size para 2;
  • na janela Select a null model altere # simulations para 20;
  • aperte novamente o botão Calculate index;

Descreva o padrão observado

O Programita permite acompanhar graficamente a simulação ao longo do tempo ;-). É possível observar que a cada simulação é gerada uma distribuição aleatória dos indivíduos e recalculado os valores de L-Ripley. Ao final é gerado o gráfico com os valores observados a partir do arquivo de dados, acompanhado do envelope de confiança gerado a partir da simulação de completa aleatoriedade espacial. Valores fora do intervalo de confiança indicam a existência de um padrão espacial diferente do aleatório.

Dica: Faça um Print Screen dos seus resultados para salvar o gráfico de cada análise que fizer ao longo da prática.

  • 12. Faça o mesmo procedimento, porém em Which method to use selecione Ring
  • 13. Compare os resultados entre o L-Ripley e o O-Ring.

Atividade

  • repita a análise com L-Ripley e O-Ring para os arquivos com:
    • os pontos dos adultos (parentais): padrao“0X”par.dat e;
    • os pontos dos jovens (prole): padrao“0X”prole.dat;
  • interprete o resultado para cada tipo de ponto;

Padrão Bivariado: dois tipos de pontos

O Programita permite a análise de padrão de pontos de uma classe em relação a outra (por exemplo juvenis em relação a adultos). Para isso é necessário diferenciar os pontos no arquivo de dados, utilizando 0 ou 1 nas colunas 3 e 4, como mostra a figura abaixo, em um arquivo que distinguia indivíduos adultos de juvenis:

ex_dados2.png

Vamos agora analisar o padrão dos pontos associados (PROLE) em relação aos parentais (PAR), seguindo o mesmo procedimento anterior.

  • 1. selecione o arquivo com a separação de classes de pontos parentais e associados: padrao“0X”bi.dat;
  • 2. em What do you want to do selecione a opção Point-pattern analysis
  • 3. em How your data are organized selecione List
  • 4. neste caso, estamos interessados na análise do padrão em escala cumulativa para entender até que distância há agregação, por isso, em Which method to use selecione Circle ou Ripley (a depender da versão que estiver usando)
  • 5. em Select modus of data selecione List with coordinates no grid
  • 6. para testarmos se existe agregação dos pontos PROLE em relação ao PAR , utilizaremos o envelope de confiança. Selecione a opção Calculate confidence limits e selecione o modelo nulo Pattern 1 fix, 2 random.
  • 7. rode a análise apertando: Calculate index
  • 8. interprete os resultados. Obs.: o gráfico que mostra o padrão de associação é o inferior, denominado “Bivariate L-function(Ripley)”. O gráfico superior é o mesmo que o gráfico do padrão tipo A univariado (no nosso caso, o padrão dos adultos), com pequenas diferenças nos limites do eixo Y.

Descubra o algoritmo

Algoritmo é uma sequência de passos para executar uma tarefa. Os pontos dos arquivos de dados foram gerados por um algoritmo muito simples em duas fases: primeiro foram gerados os pontos parentais e em seguida os pontos associados (prole). Descreva uma sequencia de tarefas 5) que seria capaz de gerar a distribuição de pontos (incluindo ambas classes de pontos) que você observou a partir do seu arquivo de dados.



Distribuição Espacial de Palmitos na Restinga

palmito00.jpg O Palmiteiro (Euterpe edulis Mart.) é uma espécie muito característica das florestas atlânticas e costuma ocorrer com densidades altas em áreas mais preservadas. Vamos agora analisar os dados referentes a uma população de palmitos que ocorre em uma parcela de floresta de Restinga na Ilha do Cardoso, Cananéia -SP. Os dados foram coletados nos anos de 2009/2010 em uma área de 10,24ha (320m x 320m).

Preparamos três arquivos no formato lido pelo Programita:

  1. dados de indivíduos juvenis (diâmetro do tronco entre 1 e 5 cm): juvenil.dat
  2. dados de indivíduos adultos (diâmetro do tronco > 5 cm): adulto.dat
  3. juvenis e adultos (padrão 1 adulto, padrão 2 juvenil): juvenil_adulto.dat



Utilize as ferramentas disponíveis no Programita para descrever os padrões espaciais:

  • da população total de palmito;
  • apenas dos juvenis e;
  • apenas dos adultos.

Investigue se a distribuição dos juvenis está associada a dos adultos.

Padrões & Processos Junte-se em um grupo de 2 a 4 alunos e discuta quais possíveis processos poderiam gerar os padrões descritos.

1)
ou seja, a localização de um indivíduo não melhora a predição de onde outros indivíduos podem estar
2)
por exemplo, em relação ao número médio de indivíduos
3)
igual ao raio interno do anel
4)
equivalente a intervalo de confiança obtido por simulação numérica
5)
p.ex: gerar 10 valores de x a partir de uma distribuição aleatória uniforme de 0 a 100; gerar valores de uma sequência de 10 a 90 a cada intervalo de 5 como o y….
ecovirt/roteiro/pad_spat.txt · Última modificação: 2022/09/27 12:40 (edição externa)