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1.  Programita 

1.1. Abstract 

The Programita software allows you to perform univariate and bivariate point-
pattern analysis with Ripley's L-function and the O-ring statistic. Programita 
contains standard and non-standard procedures for most practical applications. 
Procedures for non-standard situations include the possibility to perform point-
pattern analyses for arbitrarily shaped study regions and Programita offers a 
range of non-standard null models such as heterogeneous Poisson null models or 
cluster null models. 
 
The calculation of the L-function and the O-ring statistic is done within a grid-
based framework which greatly simplifies the computation of L and O for non-
standard situations. Both measure are based on the distance between all pairs of 
points of a pattern and count the number of points within (or at) a certain dis-
tance, r, of each point, with r taking a range of scales. While the L-function is 
basically related to the mean number of neighbours in a circle of radius r, the O-
ring statistic is related to the mean number of neighbours in an annulus of radius 
r.  

 
Programita tests for significance of a given null model by comparing the ob-
served data with Monte Carlo envelopes from multiple simulations of the null 
model. Programita allows for a variety of specific null models for univariate and 
bivariate point-patterns. The procedures used by Programita are described in 
detail in Wiegand and Moloney 2004. 
 
This document is primarily a manual to the use of Programita with extensive 
examples, but it provides also an introduction to point-pattern analysis.  
 

1.2. Before starting Programita 

1.2.1. Hardware requirements 

Programita is a free unsupported software, developed in Borland Delphi4 under 
a WindowsXP environment. Programita is executable under 32-bit operating 
systems such as Windows98, Windows 2000, Windows XP or WindowsNT.  
 
Running Programita requires little hard drive space. For example, for grid sizes 
< 200 ×200 cells Programita and temporally created files occupy < 10M. How-
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ever, analysis of larger grid sizes may be slow for small working memory and 
low computer speed. 

1.2.2. Terms of use and copyright agreement 

The Programita software is produced by Thorsten Wiegand in his spare time. He 
is affiliated at the Dept. Ecological Modelling, UFZ Centre for Environmental 
Research Leipzig-Halle. Programita is intended to foster analysis of point pat-
terns in ecology by providing ecologists a tool that contains null models and pro-
cedures not supported by most statistical packages, but which are essential for a 
throughout analysis of point-patterns. The Programita software is not a not 
commercial venture and may be downloaded and used free of charge for pur-
poses of scientific research and teaching. Any commercial application of the 
program requires the previous permission by the author. Publications must ac-
knowledge use of the Programita and cite Wiegand and Moloney (2004) which 
describes the implementation and the procedures used by Programita.  

1.2.3. Installation  

There is no setup procedure; installation of programita requires only the extrac-
tion of all files from the zip file Progamita.zip. Make sure that you also access 
the PDF (ManualProgramita2004b.pdf) and HTM versions (Manu-
alHTM2004b.zip) of the user manual of Programita. Place the files into a direc-
tory of your choice; extracting the zip file will place all files into the sub-
directory Programita. Note that you must place all files in the same directory; for 
simplicity Programita does not use a path variable. The zip-file contains the fol-
lowing files and file types: 
 
programita2004b.exe the executable of Programita, version 8 of March 2004 
*.asc files example data file in ArcView raster format 
*.dat files example data files and temporary files 
*.fit files file with results of the fit of a cluster null model 
*.res files results and settings files 
*.shp files files used for defining an irregularly shaped study re-

gion 
 
The manual of Programita (ManualProgramita2004b.pdf) and a HTM version 
of the manual (ManualHTM2004bzip) are provided separately. You can use 
the HTM version as help because it contains many textmarks and internal links 
for easy navigation through the document.  
 



THORSTEN WIEGAND 

 

9 

1.2.4. Screen size 

Programita was designed for a screen of 1024 × 768 pixels, but it can be run as 
well using a 800 × 600 screen. If you execute Programita in the 1024 × 768 
pixel mode, it must look like the segment shown in Figure 1. Sometimes win-
dows within Programita are truncated and one cannot see all of some buttons or 
headers. In this case it is as if the window is too small to handle them. To avoid 
this problem check the default letter size in the settings of your computer. Your 
computer may scale the letters but not the window sizes and as a consequence, 
the windows appear too small. 
 

 

Figure 1. Correct display of the Programita interface under the 1024 × 768 pixel mode. 
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1.3. A quick start 

1.3.1. Execute Programita 

Execute programita2004b.exe and adjust Programita to your 
screen size. Two options are given, a screen of 800 × 600 pixels, 
and a larger screen of 1024 × 768 pixels.  
  
  

1.3.2. Load a settings file to redo an analysis 
 

 

 

There is a convenient way to quickly start with 
Programita and to learn the settings. You can read 
a file (a *.res file) that contains all setting of a pre-
vious analysis and redo this analysis. For example, 
you can repeat all analysis show in the figures 3 - 6 
in Wiegand and Moloney (2004). 

 

Figure 2. Load an example 
settings file. 

 
To load a settings file, apply the button “Load Settings for Example” (Fig. 2) 
and a list with files containing settings of old analysis will appear (Fig. 2). Se-
lect a *.res file, for example fig3B.res, press ok, and then the button “Calculate 
Index”. Now Programita performs the analysis of figure 3B in Wiegand and 
Moloney (2004).  
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1.3.3. What happens on the screen? 

After loading the settings file fig3b.res, Programita will automatically select all 
settings for the data and analysis mode and all settings for the null model that 
was used in the example fig3B.res.  
 
Two plots will appear: on the left a plot showing the original point pattern being 
analyzed (Fig. 3a), and on the right appear the patterns of the Monte Carlo 
simulations of the null model used for constructing the confidence envelopes. 
After termination of the simulations of the null model, the figure with the simu-
lated patterns of the null model disappears, and instead a figure with the result 
of the analysis appears on the right (Fig. 3b). 
 

 

 
 

Figure 3a. Left: the point-pattern analysed in fig3B in Wiegand and Moloney (2004). Right: 
One realization of the Monte Carlo null model (a random pattern, CSR) used to construct the 
confidence envelopes. 
 
 

Figure3b. After termination of the Monte 
Carlo simulations of the null model, a figure 
with the result appears on the right. The figure 
shows Wiegand-Moloney's O-ring statistics 
(or Ripley's L-function) together with the 
confidence envelopes for the specific null 
model chosen. The top figure shows the re-
sults of the univariate point pattern analysis; 
the bottom figure shows the results of the 
bivariate analysis if a second type of points 
was specified. In fig3B only one type of points 
was used, therefore there appears no result for 
the bivariate analysis. 
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1.3.4. Save the results of the analysis 

To save the results of the analysis press the button “save results” that appears 
below the graph with the results of the univariate analysis (figure 3b), and insert 
a name for the result file. The results file will be saved as ASCII file name.res in 
the same directory where programita.exe is located. The results file (figure 4) 
contains the settings of this analysis and the results of the univariate and the 
bivariate point-pattern analysis. The results file name.res can be used (in the 
same way as fig3B.res) in the previous section to load the setting and to repeat 
the analysis. 
 
 

 
 
Figure 4. The *.res results file (fig3B.res). The first 11 lines contain the information on the 
settings of the analysis; the following part contains a table with the results of the analysis. The 
first column gives the spatial scale r of the point-pattern analysis, the second and third column 
provide a summary of the Monte Carlo significance test of the null model ("-": data at scale r 
below the confidence intervals, "r": inside the confidence envelopes, and "+": above the confi-
dence envelopes; second column for univariate analysis, third column for bivariate analysis), 
columns 4, 5, 6: results of univariate analysis (column 4: univariate L-function or O-statistic of 
the data, column 5: lower confidence envelop, column 6: upper confidence envelope), and col-
umns 7, 8, 9: results of bivariate analysis (column 7: univariate L-function or O-statistic of the 
data, column 8: lower confidence envelop, column 9: upper confidence envelope). 
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1.3.5. Temporary data files 

During the analysis, Programita creates a number of temporary data files which 
are overwritten by a new analysis. Knowing these files you may use the infor-
mation they contain.  
 
 The files tempp1.dat and tempp2.dat.⎯The file tempp1.dat contains a matrix 
representation of pattern 1. The first line contains information on the dimen-
sions of the grid: (1, number of lines, 1, number of columns). The following 
lines are the data matrix with the pattern. The numbers are not code numbers as 
in the matrix data format but give the number of points of pattern 1 in a given 
cell. The file tempp1.dat does not contain information on an irregularly shaped 
study region.  
 
The file tempp2.dat is the analogue to tempp1.dat and gives the number of 
points of pattern 2 in a given cell.  
 
 The files Bi_confidence.dat and Uni_confidence.dat.⎯Programita uses the 
lowest and highest O(r) [or L(r)] of the different simulations of the null model 
as confidence envelope. However, it automatically produces two temporally 
files (Uni_confidence.dat, Bi_confidence.dat) that contain the O(r) [or L(r)] for 
all simulations of the null model. The columns of these files are the scales r = 1, 
rmax, and the lines are the different simulations of the null model. You may use 
this information to construct confidence envelopes with different definitions, for 
example the 5th highest and 5th lowest O(r) [or L(r)] out of 99 replicate simula-
tions of the null model for defining 95% confidence envelopes (e.g., Stoyan and 
Stoyan 1994). 
 
 The file tempshape.dat.⎯If you analyze an irregularly shaped study region in 
the mode "Points without grid", Programita creates the file tempshape.dat. This 
file is the version of your data in the mode "Points in grid"  
 
 The file temp.fit.⎯If you fit a Neyman-Scott cluster model to your data pro-
gramita saves the results of the fit in the temporary file temp.fit. However, the 
menu of Programita allows you to save the results of the fit under any name. 
 
 The files RL_join_1.rlb and RL_join_2.rlb.⎯Programita uses these files to 
show you, without performing new simulations of the null model, the results of 
the different variants 1 - 6 of random labeling.  
 



USER MANUAL FOR PROGRAMITA 

 

14 

1.4. The input data files (*.dat and *.asc data files) 

Programita performs point pattern analysis for two different situations. First, it 
calculates the O-ring statistic and the L-function for point pattern which are basi-
cally given as a list of points. In a second mode, Programita performs point-
pattern analysis for categorical maps. In this case the data input is a matrix with 
categories that can range from 0 to 9. It is important to understand the difference 
in point pattern analysis between points and categorical maps. In the following 
we discuss the data input separately for these two modes.  
 

1.4.1. Settings for point-pattern analysis using lists of points 

Programita performs common point pattern analysis for patterns which are given 
as a list of coordinates. In this case enable "List" in menu How are your data organ-

ized? (figure 5 left). There are two options for lists: (1) the data are list of coordi-
nates, or (2) the data are transformed to a grid. If your data are a list of coordi-
nates of points select the option "List with coordinates, no grid" in the settings 
menu Select modus of data (figure 5 right). If the coordinates in the list refer to cells 
of a grid select "Data are given as list in grid" in the settings menu Select modus of 

data.  
 
 
 

  

 
 

 

 Figure 5. The settings menus for data input. 
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1.4.2. Preparation of data in grid-mode for lists of points 

The data file must be a space (or tab) delimited ASCII file with the *.dat exten-
sion (see example in figure 6). You need to provide information on the grid size, 
the number of cells with data, and the coordinates of cells that contain points. If 
your study region is of non-rectangular shape you need additionally to include 
the empty cells of your study region into the list. The numbering of the cells can 
start with any integer number; however, Programita will internally transform 
the coordinates to integers that start with the coordinates 1. You can read data 
which are given as numbers of points in a cell (in this case the columns 3 and 4 
of the list can contain the values 0, 1, 2, 3, 4 …), or as a list of points with coor-
dinates (in this case columns 3 and 4 may contain only the values 0 and 1). The 
grid size is automatically set to a value of 1. 
 
 

 
 
Figure 6. Example of a data file for "Data age given as list in grid". Shown are the first lines of 
the file marcela.dat used in fig3B.res. The first line contains information on the grid: it is a 198 
× 191 grid with a grid size 1. The numbers of the first line: 0: smallest x-coordinate for a cell, 
197: largest x-coordinate, 0: smallest y-coordinate for a cell, 190: largest y-coordinate, 283: 
total number of cells to read (= number of lines in marcela.dat -1). The first column gives the x-
coordinates of the cells, the second column gives the y-coordinates of the cells, the third col-
umn gives the number of points of pattern 1 in the cell, and the fourth column gives the num-
ber of points of pattern 2 in the cell. The columns 3 and 4 can contain any integer number 0, 1, 
2,… Note that a line "x  y  0  0" defines an empty cell with coordinates (x, y). You need to in-
clude empty cells if you want to analyze a study region of non-rectangular shape.  
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1.4.3. Preparation of data in points-mode 

The data file must be a space (or tab) delimited ASCII file with the *.dat exten-
sion (see example in figure 7). In contrast to a data file in the grid-mode, the 
coordinates in the point mode can be real numbers. This is a convenient feature 
since many field data may be e.g., in meter units with centimetres as digits. You 
need to provide information on the edge-coordinates of your study region, and 
the number of points in the list. If your study region is of non-rectangular shape 
you need additionally a (*.shp) data file with a list of points that encircle your 
study region. In this case the edge-coordinates of your study region are the co-
ordinates of a rectangle that contains the entire study region.  
 
 

 
 
Figure 7. Example of a data file for "List with coordinates, no grid". Shown are the first lines of 
the file adults_real.dat. The first line contains the edges of the study region (xmin, xmax, ymin, 
ymax), and the number of points in the list. The first column gives the x-coordinates of the 
points, and the second column gives the y-coordinates of the points. The third column contains 
the indicator 1 if the point is of type 1 and the indicator 0 if the point is of type 2. The fourth 
column contains the indicator 0 if the point is of type 1 and the indicator 1 if the point is of type 
2. Note that the third and forth column can only have the values 0 or 1. 
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1.4.4. Interval definition for points-mode 

For transformation of your original coordi-
nates to the internal grid coordinates of Pro-
gramita, you need to provide a cell size. The 
cell size defines the resolution of the analysis 
with Programita. Selection of an appropriate 
cell size is constrained by the sampling error 
of the coordinates of the points that defines a 
minimum cell size, and by computational 
time for larger grids. A resolution coarser 
than the sampling error can be selected; this 
will depend on the minimum resolution of 
distance classes necessary for responding to 
the scientific question.  

Figure 8. The window to select a cell 
size. 

 
After selecting a data file and enabling "List with coordinates, no grid" the win-
dow Select a new cell size opens and asks you to provide a cell size. To help you in 
the selection of an appropriate cell size Programita shows the edge coordinates 
of the study region and the cell size that would correspond to a grid with 100 
cells in the wide size. You can select any cell size > 0. However, by selecting a 
cell size be aware that large grids may considerably slow down Programita. 
 

1.4.5. Transformation of data to grid for points-mode 

Programita uses the following scheme for transformation of your original coor-
dinates to grid coordinates:  
 

grid  
coordinate 

 
interval of original data 

 
      
1 [0*cell size, 1*cell size)  
2 [1*cell size, 2*cell size)  
3 [2*cell size, 3*cell size)  
… …  
n [(n-1)*cell size, n*cell size]  

 
where "[" is the closed interval that includes the left edge, and ")" is the open 
interval that does not includes the right edge.  
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1.4.6. Data input for point-pattern analysis using categorical maps 

Programita facilitates analysis of categorical maps in raster format. For calcula-
tion of Wiegand-Moloney's O-ring statistic and Ripley's L-function, Programita 
considers four different categories: 
 

• the cell is of type 1 (pattern 1) 
• the cell is of type 2 (pattern 2) 
• the cell is empty 
• the cell is outside the study region (mask) 

 
The procedures for calculation of the O-ring statistic and the L-function for cate-
gorical maps are the same as for point data. 
 

1.4.7. Difference between matrix and point mode 

 Because the content of a cell is not a num-
ber of points, but a category, the Monte 
Carlo simulation of null models differs 
slightly. Under the mode "Matrix" the null 
model does not allow to have the same 
category two times in a given cell. How-
ever, if you enable the checkbox "Only one 
point per pattern" in the null-model window 
(figure 9), Programita allows having a 
mixed category where type 1 and type 2 are 
together in one cell. Thus, Programita uses 
in the matrix mode the same procedures for 
calculation of the O-ring statistic, the L-
function, and for the null models as in the 
"Point mode", but in the matrix mode only 
one point (or one point per pattern) is al-
lowed in a given cell.  

Figure 9. The null-model window for 
the mode "Matrix". 

 

 



THORSTEN WIEGAND 

 

19 

 

1.4.8. Preparation of data under matrix-mode 

The input data are a matrix that can have the following code numbers: 
• 0, 1, 2, ..., 9 if the cell is inside the study region  
• -1 (or -9999) if the cell is outside the study region (mask) 

 
Programita reads two different data formats in the matrix-mode: 

1. a space (or tab) delimited ASCII file with the *.dat extension with line 
breaks. 

2. the ASCII format of ArcView (a *.asc file) without line breaks. The head 
of the *.asc file must look like this: 
 
ncols 144 
nrows 45 
xllcorner 1 
yllcorner 1 
cellsize  1 
nodata_value -9999 

 

 
ncols gives the number of columns, nrows the number of rows, xllcorner the 
smallest x-coordinate, and yllcorner the smallest y-coordinate. The cellsize must 
be "1" and the value for no data (the mask) must be -9999. 
 

 

 

The matrix mode allows you to use a data ma-
trix with different code numbers, however, 
calculation of Wiegand-Moloney's O-ring sta-
tistic and Ripley's L-function Programita re-
quires a reduction of the original code numbers 
to the four categories: 
 

• the cell is of type 1 (pattern 1) 
• the cell is of type 2 (pattern 2) 
• the cell is outside the study region 

(mask) 
• the cell is empty 

 

 
Figure 10. Transformation of the 
original code numbers of the data 
matrix to the three categories: pattern 
1, pattern 2, and mask outside the 
study region. All other categories 
which are not set are automatically 
defined as empty cells. 
 

If you enable the "Matrix" or "Data are given as matrix" option, the window Give 

code number for patterns (figure 10) appears and ask you to group your code num-
bers into the final categories "pattern 1", "pattern 2", and "mask". All other cells 
with code numbers not defines as pattern 1, pattern 2, or mask are defined auto-
matically as empty cells. You can combine up to four code numbers (but not -1) 
to define "pattern 1" and "pattern 2", and up to four categories (including -1) to 
define the area outside the study region.  
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Thus, you can mask, if required, additionally cells which are part of the original 
the study region. For example, if you study vegetation maps with category 0: 
bare ground, category 1: grass tufts (size of one cell) and category 2: shrubs (size 
of several cells) you may mask the area occupied by shrubs for studying the spa-
tial pattern of the grass tufts. If you do not exclude the area occupied by shrubs 
(which cover perhaps 10% or so of the study region) a simple null model that 
randomizes the locations of the grass tufts (CSR) will distribute tufts at locations 
where they cannot occur in the field. This introduces a bias in the analysis.  
 
The possibility to use up to 10 categories is a convenient feature because you can 
use the same data for different analyses. Be sure that a given code number does 
not appear in different categories. A given cell can either be pattern 1, pattern 2, 
empty, or mask! 
 
 

1.4.9. Format of the *.dat matrix data file 

The *.dat matrix data file is a space (or tab) delimited ASCII file. The first line 
contains information on the dimensions of the grid: (1, number of lines, 1, num-
ber of columns). The following lines are the data matrix with the different code 
numbers. In contrast to the ArcView ASCII matrix format you need to insert 
line breaks. Note that the visualization of Programita corresponds to the trans-
posed matrix. (figure 11). 
 

 
 
Figure 11. Example of a *.dat input data file for the matrix mode. Shown are the file 
small_matrix.dat (left) and the visualization in Programita (right). Red: cells of pattern 1 (code 
1), green: cells of pattern 2 (code 2), grey: empty cells (code 0), black: mask with cells outside 
the study region (code -1). The first line contains information on the grid: (1, number of lines, 1, 
number of columns). Note that the visualization of Programita corresponds to the transposed 
matrix. 
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1.5. The Settings Menu for Point Pattern Analysis 

If you select in the menu What do you want to do? "Point-pattern analysis", Pro-
gramita allows you to select different types of analysis, input data, input data 
formats, etc. If you do not use a *.res settings file that stores the settings from a 
previous analysis you need to carefully select all settings manually from the set-
tings menu before performing any analysis.  
 
Programita calculates Ripley's L function (Circle in Which method will you use) and 
Wiegand-Moloney's O-ring statistic (Ring in Which method will you use) in a grid-
based implementation for a given data file (selected in Input data file).  
 
 

 

In the window How are your data organized? you can 
select between two types of input data: (1) data 
which are given as a list of points and (2) categorical 
data which are organized as a matrix.  

1.5.1. List of points 

If your data are organized as list of points, you need 
to specify in the window Select modus of data whether 
your data are already transformed to a grid (integer 
coordinates) or if they are a list of coordinates (inte-
ger or real coordinates) without reference to a grid. 
In the latter case you need to provide a cell size.  

1.5.2. Matrix data  

If your data are a matrix (categorical data), you need 
to specify in the window Give code numbers for pattern 
which code numbers of your data matrix make up 
pattern 1, pattern 2, and the mask. The mask defines 
the area outside the study region if your study region 
is irregularly shaped. 

 
Figure 12. The settings menu 
for Point-pattern analysis. 
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1.5.3. Arbitrarily shaped study region 

You can consider any arbitrarily shaped study 
region supported by the grid structure. If you se-
lect in the window Give modus of analysis the option 
"Irregularly shaped study region" some cells of 
the rectangular grid are not considered during the  

 

Monte Carlo simulation of the null models, and cells outside the study region are 
not counted for the numerical implementation of the L-function and the O-ring 
statistic. In contrast, if you select "Analyze all data in rectangle" the study region 
is the rectangle defined by your grid and all cells of the rectangle count and all 
cells are considered for simulation of the Monte Carlo Null models. 

1.5.4. Arbitrarily shaped study region for "list in grid" 

If your data are organized as list in a grid the list needs to include all cells with 
points and all empty cells of the study region. All cells that do not appear in the 
list are automatically defined as mask.  

1.5.5. Arbitrarily shaped study region for "list without grid" 

If your data are organized as list without grid, a 
window opens and ask you to provide a file with a 
list of points that encircle the study region (figure 
13). This data file needs to be a space or tab de-
limited ASCII file with the *.shp extension. The 
first line gives the number of points in the list, and 
the following lines give the coordinates of the 
points that encircle the study region. The *.shp 
list of points (figure 14) need to define a closed 
shape. Be sure that the resolution of the line that 
encircles the study region is in accordance with 
the minimal cell size you will use. 
 

 
Figure 13. Window to define an 
irregularly study region if the data 
are points without grid. 

If the resolution of the line is too coarse, Pro-
gramita cannot properly define the study region. 
Be sure that the points in the *.shp list are defined 
in the same units as the points in the *.dat file that 
define your patterns. Programita asks you to con-
firm the cell size and to select the *.shp file. 

 
Figure 14. Example of the first 
lines of a *.shp file. 
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1.5.6. Arbitrarily shaped study region for matrix data 

If your data are organized as matrix you can 
define a mask (cells outside the study region) 
with the category "-1", but additionally you can 
use any code number of your data matrix as 
mask.  
 

1.5.7. Maximum scales r and ring width dr 

The analysis is performed for spatial scale r = 1, 
.. rmax. The default value of the maximal scale 
rmax is half of the dimension of the smaller side 
of the grid; however, rmax can be changed with 
the button set maximal radius rmax.  

 

If you select the O-ring statistic, you can change the ring width dr in the box ring 

width. The default ring width dr is one cell; however, if the rings are too narrow 
Programita will produce jagged plots for O(r) as not enough points will fall into 
the different distance classes (figure 15). In this case you may select a larger ring 
width. 
 

Figure 15. Different ring widths 
dr. The example shows the O-ring 
statistic for the data set 
adults_real.dat with a cell size 
0.5m and a ring width dr = 1 (top) 
and a ring width dr = 4(bottom).  
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Figure D1. Numerical implementation of the L- function and the O-ring statistic for an irregu-
larly shaped study region. Points of pattern 2 are represented by closed circles, the focal point I 
of pattern 1 as open circle within the red cell. Note that we approximate circles and rings with 
the underlying grid structure. Study region: grey and white cells, area outside the study region: 
black cells. (Left): For numerical implementation of  Ripley’s bivariate L-function we count the 
number of points of pattern 2 inside the part of the circles around point I of pattern 1 which falls 
inside the study region (i.e., the gray shaded area), and the number of cells within this area. 
(Right): For implementation of the bivariate O-function we count the number of points of pat-
tern 2 inside the part of the ring around point I of pattern 1 which falls inside the study region 
(i.e., the gray shaded area), and the number of cells within this area. 
 
 

2. Background of second-order statistics 
For a homogeneous and isotropic point pattern, the second-order characteristics 
depend only on distance r, but not on the direction or the location of points. An 
appropriate geometry is therefore to adopt circular shapes (such as the circles of 
Ripley’s K-function or the rings of Wiegand-Moloney's O-ring statistic) as a 
basis for the spatial statistics. Using rings instead of circles (Figure D1) has the 
advantage that one can isolate specific distance classes, whereas the cumulative 
K-function confounds effects at larger distances with effects at shorter distances. 
Note that the K-function and the O-ring statistic respond to slightly different 
biological questions. The accumulative K-function can detect aggregation or 
dispersion up to a given distance r and is therefore appropriate if the process in 
question (e.g., the negative effect of competition) may work only up to a certain 
distance, whereas the O-ring statistic can detect aggregation or dispersion at a 
given distance r.  
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2.1. Ripley's K and L-function 

2.1.1. Definition of the bivariate K- and L-functions 

The bivariate K-function K12(r) is defined as the expected number of points of 
pattern 2 within a given distance r of an arbitrary point of pattern 1, divided by 
the intensity λ2 of points of pattern 2: 
 
 λ2 K12(r) = E[#(points of pattern 2≤ r from an arbitrary point of pattern 1)] (D1) 
 
where # means “the number of”, and E[] is the expectation operator. Under in-
dependence of the two point patterns, K12(r) = π r2, without regard to the indi-
vidual univariate point patterns. It can be difficult to interpret K12(r) visually. 
Therefore, a square root transformation of K(r), called L-function (Besag 1977), 
is used instead: 
 

         )
π

)(()( 12
12 rrKrL −=          (D2) 

 
This transformation removes the scale dependence of K12(r) for independent 
patterns and stabilizes the variance (Ripley 1981). Values of L12(r) > 0 indicate 
that there are on average more points of pattern 2 within distance r of points of 
pattern 1 as one would expect under independence, thus indicating attraction 
between the two patterns up to distance r. Similarly, values of L12(r) < 0 indi-
cate repulsion between the two patterns up to distance r. The estimated L-
function )(ˆ

12 rL  is calculated for a sequence of distances r and the results of 
)(ˆ

12 rL are then plotted against distance.  

2.1.2. Confidence envelopes 

Because a given data set is only a unique realization of a given stochastic point 
process within a study region of limited size, the estimators of the L-function or 
the O-ring statistic may show small deviations from their theoretical values un-
der a given null model. In order to test a null model against real data it is there-
fore necessary to take uncertainty due to (1) the stochastic character of the point 
process and uncertainty due to (2) the limited sample size (the number of points 
N of the pattern may be small) into account. Theoretically, distribution theory 
could be used in determining confidence envelopes for null models of point-
patterns. However, this approach quickly becomes analytically intractable if 
edge effects for irregularly shaped study regions are considered, or if null mod-
els other than CSR are considered. Therefore, the more practical alternative is to 
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use Monte Carlo simulations of a realization of the stochastic process underly-
ing the specific null model in constructing confidence envelopes around the null 
model (Upton and Fingleton 1985; Bailey and Gatrell 1995). Each simulation 
generates an )(ˆ

12 rL function, and approximate n/(n + 1) ×100% confidence en-
velopes are calculated from the highest and lowest values of )(ˆ

12 rL  taken from n 
simulations of the null model. For example, a 95% confidence envelope requires 
n = 19 simulations (e.g., Bailey and Gatrell 1995). A more accurate approach is 
to use the 5th-lowest and 5th highest )(ˆ

12 rL . In this case, 99 randomizations 
provide 5% confidence envelopes (e.g., Stoyan and Stoyan 1994). If )(ˆ

12 rL has 
some part outside of that envelope, it is judged to be a significant departure 
from the null model.  
 Programita uses the lowest and highest )(ˆ

12 rL  for determination of the con-
fidence interval, however, it automatically produces two temporally files 
(Uni_confidence.dat, Bi_confidence.dat) that contain the )(ˆ

11 rL  and )(ˆ
12 rL for 

all simulations of the null model. The columns are the scales r = 1, rmax, and the 
lines are the different simulations of the null model. You can use this data for 
alternative constructions of confidence envelopes. 

2.1.3. The Univariate K- and L-functions 

The univariate K-function K(r) is calculated in a manner analogous to the 
bivariate K function by setting pattern 1 equal to pattern 2. In this case the focal 
points of the circles are not counted. For a homogeneous Poisson process (com-
plete spatial randomness CSR), K(r) = π r2 and L(r) = 0. L(r) > 0 indicates ag-
gregation of the pattern up to distance r, while L(r) < 0 indicates regularity of 
the pattern up to distance r.  
 

2.2. Wiegand-Moloney's O-ring statistic 

2.2.1. Definition of the O-ring statistic and the g-function 

The mark-correlation function g12(r) is the analogue of Ripley’s K12(r) when 
replacing the circles of radius r by rings with radius r, and the O-ring statistic 
O12(r) = λ2 g12(r) gives the expected number of points of pattern 2 at distance r 
from an arbitrary point of pattern 1 (Fig. 1B): 
 
O12(r) = E[#(points of pattern 2 at distance r from an arbitrary point of pattern 1)] (D3) 
 
The mark-correlation function g12(r) is related to Ripley’s K-function (Ripley 
1981; Stoyan and Stoyan 1994): 
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        )π2/(
d

)(d)( 12
12 r

r
rKrg =           (D4) 

 
We obtain O12(r) = λ2 for independent patterns, O12(r) < λ2 for repulsion, 
whereas O12(r) > λ2 for attraction.  
 

2.2.2. Selection of ring width 

 In practice, the calculation of the O-ring statistic involves a technical deci-
sion on the width of the rings. Clearly, the use of rings that are too narrow will 
produce jagged plots as not enough points will fall into the different distance 
classes. This problem does not occur for the accumulative K-functions. On the 
other hand, the O-ring statistic will lose the advantage that it can isolate specific 
distance classes if the rings are too wide.  
 Again, the univariate O-ring statistic O(r) is calculated by setting pattern 2 
equal to pattern 1. For CSR, O(r) = λ, O(r) > λ indicates aggregation of the pat-
tern at distance r, and O(r) < λ regularity. 
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2.3. The memory in the K-function 

Departure from the expectation under independence at a given scale r0 [e.g., 
repulsion due to non-overlapping tree canopies] yields a K-function K(r0) ≠ π 
r0

2. Because the K-function is accumulative, the value K(r0) influences the shape 
of the K-function also at scales r > r0. This can be show mathematically for a 
pattern with no second-order effects at scales r > r0 [thus g(r) = 1 for r > r0], but 
a second-order effect up to scale r0. In this case integration of equation D4 yields 
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and the L-function becomes:  
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which collapses back to L(r) = 0 if there are no second-order effects [i.e., K(r0) = 
π r0

2]. For a hard core at r0 = δ [i.e.,  K(δ) = 0], equation M2 collapses to 
equation HC3. Fig. M1 shows how second-order effects at small scales [i.e., a 
given K(r0) ≠ π r1

2, equation M1)] impact the L-function at higher scales if there 
a no second order effects at higher scales [i.e., g(r) = 1 for r > r0]. 
 

Figure M1. The memory in the ac-
cumulative Ripley’s L-function. True 
second-order effects up to scale r0, 
and no second-order effects for scales 
r > r0. The different curves show 
equation M2 for initial values L(r0) = -
4, -3, -2, -1, 0, 1, 2, 3, and 4. The bold 
line gives the L-function without 
second-order effects [i.e., L(r) = 0] 
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2.4. Virtual aggregation of univariate point patterns 

If a pattern is not homogeneous, the null model of CSR is not suitable for explo-
ration of second-order characteristics. This is because large-scale, first-order 
effects introduce a systematic bias in the univariate K-function, not only at larger 
scales, but also at smaller scales. In this case, an observed departure from CSR 
could well be due to first order effects rather than to second order effects (Bailey 
and Gatrell 1995). This can be understood intuitively, when imagining a point 
pattern that comprises a single internally homogeneous cluster in the center of 
the study region (e.g., Example CSR_1, figure V1). In this case the local density 
of points in the cluster will be higher than the overall density of points in the 
entire study region (figure V1, left). As a consequence, there are always more 
points in the closer neighborhood of other points than expected under homogene-
ity, and the K-function will indicate aggregation at smaller scales even if the pat-
tern is random inside the cluster (figure V1, right). We call this phenomenon 
“virtual aggregation.” 
 

 
Figure V1. The results of example CSR_1.res for the O-ring-statistic (left) and for Ripley's K 
(right).  
 
 
To demonstrate this intuitive idea mathematically, we imagine a univariate point 
pattern with overall intensity λ that forms an internally random cluster covering 
the proportion c of the study region. There are no points outside the cluster. Be-
cause sub-regions of the cluster satisfy CSR, the probability O(r) of finding a 
point at the closer neighborhood r of other points will be approximately constant, 
i.e. O(r) = g λ with g = 1/c. To obtain the corresponding K-function we integrate 
equation D4 using g(r) = O(r)/λ = g and obtain K(r) = π g r2, which yields:  
 
    )1()( −= grrL                (V1) 
 
Thus, under virtual aggregation we observe an L-function that increases at 
smaller scales linearly, and the extent of virtual aggregation, given through the 
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slope g -1, is inversely related to the fraction c of the study region covered by 
the cluster. Note that for smaller scales (i.e., scales r below the cluster size) the 
functional form of L(r) under virtual aggregation is the same as under a Neyman-
Scott cluster process (cf. equation V1 and equation C2). This is not surprising 
because virtual aggregation is caused by larg-scale clustering. The difference is 
that the cluster size under virtual aggregation is defined to be large, while the 
Neyman-Scott process can be applied for any cluster size. 
 
The L-function can increase under virtual aggregation only over a limited range 
of scales; it will start to drop if a notable proportion of circles overlap the part of 
the study region outside the cluster. Finally, the L-function will approach zero 
for very large scales r because then all points will be located within each circle, 
i.e., K(r) = π r2, and L(r) = 0. 
 
If the pattern shows virtual aggregation but additionally true second-order effects 
[i.e., a non constant pair-correlation function g(r) at scales r < r1, and g(r) = g for 
r > r1], integration of equation I3 yields  
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and the L-function becomes:  
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which collapses back to equation V1 if there are no second-order effects [i.e., 
K(r1) = π g r1

2]. Note that equation V3 approximates the impact of virtual aggre-
gation only for a limited range of scales r, and for large scales the assumption 
g(r) = g does not hold because in this case the circles will overlap the gap.  
 
Weak virtual aggregation increases the local density O(r) at smaller scales r only 
slightly and it should therefore not seriously affect the outcome of second-order 
analysis. However, the problem is that the Monte Carlo test for Ripley’s K will 
indicate highly significant aggregation because the K-function is a cumulative 
measure where aggregation at smaller scales influences the estimate at larger 
scales (equation M1). The Monte Carlo test for the non-accumulative O-ring 
statistic, however, will indicate the expected weak aggregation. Example CSR_1 
illustrates this point. 
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2.5. Numerical implementation of second-order statistics 

Numerical methods require division of the study region into a grid of cells 
(figure 1). Selection of an appropriate cell size is constrained by the sampling 
error of the coordinates of the points that defines a minimum cell size, and by 
computational time for larger grids. A resolution coarser than the sampling error 
can be selected; this will depend on the minimum resolution of distance classes 
necessary for responding to the scientific question. 

2.5.1. Approximation of rings and circles in a grid 

Circles and rings need to be approximated in a grid-based implementation. In a 
first step, the grid-based approximation transforms the original coordinates of 
points to coordinates of cells in a grid, and in a second step it uses the coordi-
nates of the grid cells to define (integer) distance classes r for the distance be-
tween cells. For a ring width of one cell (i.e., dr = 1), Programita uses the intui-
tive definition r = trunc(d) where d is the Euclidian distance between the coor-
dinates (x1, y1) and (x2, y2) of two cells and the function trunc truncates all digits 
of the real number and transform it to an integer (figure I1).  
 
If the ring width dr is greater than one cell, the range of distances d that fall into 
the scale r is broadened and two cells with distance d may belong to different 
rings. To determine the different scales r to which a given pair of cells with dis-
tance d belongs, a lower scale r- = trunc(d - (dr -1)/2) and a upper scale r+ = 
trunc(d + (dr -1)/2) is calculated. The pair of cells belongs to all rings with 
scales r that fall inside the interval [r- , r+]. 
 

 

Figure I1. Approximation of rings with scale 
r and ring width of one cell (dr = 1) in the 
grid-based implementation. The integer num-
ber in a given cell corresponds to the scale r of 
a ring with centre in the cell "0".  
  

 
For example, two cells with distance d = 3.8 belong to a ring with scale r = 3 if 
the ring width is one cell. For a ring width of two cells, they belongs to the rings 
with scales 3 and 4 since r- = trunc[3.8 - (2-1)/2] = trunc[3.3] = 3 and r- = 
trunc[3.8 + (2-1)/2] = trunc[4.3] = 4. 
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The definition of the scale r of circles is analogous to the definition of the rings: 
a pair of cells with distance d belongs to all circles with scale r ≥ trunc[d].  
 

2.5.2. Test of ring approximation 

To test our classification scheme for the scale r we calculated the probability 
that random points in cells separated by scale r have a real distance d. For a 
valid classification scheme we expect an average distance d close to the scale r, 
and that real distances have some normal-like distribution around scale r which 
is only little skewed. To this end, we distributed random points over a study 
region which had a x- and y-extension of 4 units (figure I2, left). Next we classi-
fied the points in cells with a cell size of one unit following our grid approxima-
tion and calculated the real distance of all points in the focal cell (scale r = 0, 
figure I1) to all points in cells which are scale r = 1 away. We then repeated this 
procedure for scales r = 2 and 3 (figure I2). We find that the scale r coincides 
well with the mean distances d, and the frequency distribution of the real dis-
tances of the real distances are only slightly skewed (figure I2, right). Thus, our 
grid-approximation of rings and circles is appropriate.  
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Figure I2. Test of our grid-approximation. Left figures: random points in the focal cell (red) 
and random points in cells which we classified to be at scale r from the focal cell (green dots). 
Right figures: frequency distribution of the real distance r of all points in the focal cell to all 
points in cells which are scale r away. The scale r coincides well with the mean distance d, and 
the frequency distributions of the real distances are only slightly skewed. Thus, our grid-
approximation of rings is appropriate.  
 
 

2.5.3. Numerical implementation of L(r) and O(r) 

Ripley's K-function is defined via λK12(r), which is "the expected number of 
points of pattern 2 at distances smaller or equal than r from an arbitrary point of 
pattern 1". The grid-based implementation of Programita considers only cells 
inside the study region and calculates 
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the mean number of points of pattern 2 in circles of radius r (centered in 
the points of pattern 1) inside the study region 
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the mean area of these circles inside the study region 
 
where C1,i(r) is the circle with radius r centered on the ith point of pattern 1, n1 
the total number of points of pattern 1 in the study region, the operator 
Points2[X] counts the points of pattern 2 in a region X, and the operator 
Area[X] determines the area of the region X. The full formula of the grid-based 
estimator of λK12(r) used in Programita yields:  
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To implement equation I3 we marked each cell (x, y) with an identifier S(x, y) 
[S(x, y) = 1 if a cell with coordinates (x, y) is inside the boundaries of the study 
region, otherwise S(x, y) = 0] and with two additional marks P1(x, y) and P2(x, y) 
that give the number of points of pattern 1 and pattern 2 lying within the cell, 
respectively. Using these definitions, the numerator of equation I3 becomes: 
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where (xi, yi) are the coordinates of the ith point of pattern 1, and the counter 
variable Ir defines the circle with radius r that is centered at the ith point of pat-
tern 1: 
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The denominator of equation I3 is calculated analogously to equation I4, but it 
counts cells instead of points: 
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where z2 is the area of one cell. Because equation I4 and equation I6 include the 
identifier S(x, y) of the study region, only points and cells are counted that are 
inside the boundaries of the study region. Therefore, the study region can be of 
any complex shape accommodated by the underlying grid. Using equation I3, 
our numerical estimator of the L-function is given by:  
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where A is the area of the study region, and n2 the number of points of pattern 2 
inside the study region. 
 The analogous numerical estimate for the bivariate O-ring statistic is:  
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where R1,i

w(r) is the ring with radius r and width w centered in the ith point of 
pattern 1. The numerator and the denominator of equation I8 are the same as 
given in equation I4 and equation I6, respectively, but the counter variable Ir for 
circles has to be replaced by a counter variable Ii

w that defines a ring with radius 
r and width w around the ith point with coordinates (xi, yi): 
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3.  Univariate Null Models 
The key for successful application of Programita is the selection of an appro-
priate null model that responds to the specific biological question asked. The 
null model constitutes a point of reference against which the data are compared. 
The simplest null models assume no interaction between the points of the pat-
tern and deviation from this null model provides evidence for interactions. The 
grid-based implementation of Programita facilitates simple implementation of a 
variety of null models that account e.g., for irregularly shaped study regions, 
first-order heterogeneity, or a cluster process. Because there are fundamental 
differences between the univariate and bivariate point pattern analysis, we pre-
sent null models separately for the univariate and the bivariate case. 

3.1. Complete Spatial Randomness (CSR) 

3.1.1. Background 

The simplest and most widely used null model for univariate point patterns is 
complete spatial randomness (CSR) that assumes no interactions between the 
points of the pattern. CSR can be implemented as a homogeneous Poisson proc-
ess. Homogeneous means that the first-order intensity λ of the pattern is con-
stant over the study region (there are no first-order effects), and Poisson means 
that the probability of finding k points in an area W follows a Poisson distribu-
tion with mean λW. Thus, any point of the pattern has an equal probability of 
occurring at any position in the study region, and the position of a point is inde-
pendent of the position of any other point (i.e., points do not interact with each 
other).  
 
If a homogeneous pattern is spatially restricted by obstacles or environmental 
heterogeneity (e.g., differences in soil), the appropriate null model is CSR, but 
applied only within an irregularly shaped study region. Note that the numerical 
approach of Programita [equation I4 and equation I5] can deal with any irregu-
larly shaped study region accommodated by the underlying grid.  
 
 

3.1.2. Rectangular study region (CSR_1.res) 

CSR is the basic null model for univariate patterns and most settings for CSR 
will apply equally for other univariate null models. Therefore, we explain all 
steps of the analysis for CSR in detail, but skip some of these details in the de-
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scription of the other univariate null models.  
 

1) highlight the data file "marcela.dat" in the window Input 
data file 

2) select "List" in How are your data organized 
3) select "Analyze all data in rectangle" in Give modus of analysis 
4) select "Ring (Wiegand-Moloney)" in Which method will you use? if 

you like to use the O-ring statistic [and Circle (Ripley) 
if you like to use the L-function] 

5) select an appropriate ring width dr in the box ring width. 
Usually a ring width of one cell is appropriate, however, 
if the intensity λ of points in the study region is too 
low, the graph of the O-ring statistic will be jagged and 
selection of a larger ring width dr is appropriate 

6) click the button "change" in set maximal radius rmax to define 
the maximal scale r of the analysis and insert "40". A 
too large scale rmax will slow down Programita.  

7) select "Data are given as list in grid" in Select modus of data 
8) click button "Calculate index". You pattern appears on 

the left, and the O-ring function of your data appears on 
the right. 

9) To determine Monte Carlo confidence intervals for CSR en-
able the check box "Calculate confidence interval" on the 
upper left. A window with settings for null models ap-
pears: 
 

 
 
Select "Pattern 1 and 2 random". 

10) You can change the number of replicate simulations of the 
null model in the box "Give number of replicates". 

11) Press "Calculate index". Programita now performs the 
simulations of the CSR null model and shows you the pat-
tern of the Monte Carlo null models. After termination of 
the simulations of the null model a graph appears, show-
ing the O-ring function of your data and the confidence 
envelopes of your null model.  

12) To save the results of the analysis press the button 
"Save results" that appears below the graph with the re-
sults of the univariate analysis and insert a name for 
the result file. The results file will be saved as ASCII 
file with a *.res extension in the same directory where 
programita.exe is located. It contains the settings of 
your analysis and the results of the univariate (and the 
bivariate) point-pattern analysis. 

13) Programita uses the lowest and highest O(r) of the dif-
ferent simulations of the null model as confidence inter-
val. However, it automatically produces two temporally 
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files (Uni_confidence.dat, Bi_confidence.dat) that con-
tain the O(r) for all simulations of the null model. The 
columns of these files are the scales r = 1, rmax, and the 
lines are the different simulations of the null model. 
The temporary files are overwritten if you start a new 
analysis. 

 

3.1.3. Irregularly shaped study region, grid mode (CSR_2.res) 

1) highlight the data file "CircularGap.dat" in window Input 
data file. This data file contains all cells with points of 
the pattern and all empty cells of the study region. 

2) select "List" in How are your data organized 
3) select "Data are given as list in grid" in Select modus of data 
4) select "Irregularly shaped study region" in Give modus of analy-

sis 
5) select in box ring width a ring width dr = 2. For dr = 1 the 

O-ring statistic has a somewhat jagged plot at smaller 
scales r. 

6) click the button "Calculate index". You pattern appears 
on the left, grey: the irregularly shaped study region, 
black: the area outside the study region, and red dots: 
the points of the pattern. 

 

 
 

7) To determine Monte Carlo confidence intervals enable the 
check box "Calculate confidence interval" on the upper 
left. A window with settings for null models appears. Se-
lect "Pattern 1 and 2 random". 

8) Press "Calculate index". Programita now performs the 
simulations of the null model and shows you the pattern 
of the Monte Carlo null models. After termination of the 
simulations a graph appears showing the O-ring function 
of your data and the confidence envelopes of your null 
model. 
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3.1.4. Irregularly shaped study region, point mode (CSR_3.res) 

1) highlight the data file "Loch25.dat" in window Input data file. 
This data file was created by distributing points ran-
domly over a 100 × 100 quadrate, but rejecting all points 
inside a circle with radius 25 located in the centre of 
the quadrate. 

2) select "List" in How are your data organized 
3) select "List with coordinates, no grid" in Select modus of 

data. A window opens asking you to provide a cell size. 
Insert "1.00". 

4) select "Irregularly shaped study region" in Give modus of analy-
sis. A window opens and asks you (1) to confirm the cell 
size, and (2) to select a file that delineates the ir-
regularly shaped study region. Click the button "Cell 
size" and the button "ok" in the window for defining the 
cell size (the cell size must be 1.00), next highlight 
the file "circle25.shp" and click "ok". 

5) click button "Calculate index". You pattern appears on 
the left, grey: the irregularly shaped study region, 
black: the area outside the study region, and red dots: 
the points of the pattern. 

6) To determine Monte Carlo confidence intervals for the CSR 
null model enable the check box "Calculate confidence in-
terval" on the upper left. A window with settings for 
null models appears. Select "Pattern 1 and 2 random". 

7) Press "Calculate index". Programita now performs the 
simulations of the null model and shows you the pattern 
of the Monte Carlo null models. After termination of the 
simulations a graph appears showing the O-ring function 
of your data and the confidence envelopes of your null 
model. 

 



THORSTEN WIEGAND 

 

43 

 
 

3.2. Heterogeneous Poisson process (HP) 

3.2.1. Background 

If a pattern is not homogeneous, the null model of CSR is not suitable for explo-
ration of second-order characteristics, and a null model accounting for first-
order effects (or for clustering) has to be used to reveal “true” second-order ef-
fects. The heterogeneous Poisson process is the simplest alternative to CSR if 
the pattern shows first-order effects. The constant intensity of the homogeneous 
Poisson process is replaced by a function λ(x, y) that varies with location (x, y), 
but the occurrence of any point remains independent of that of any other. The 
intensity function λ(x, y) determines the process completely, and numerical im-
plementation of this null model is a matter of finding an appropriate estimate of 
the intensity function. 
 
The grid-based implementation of Programita facilitates a simple method to 
implement the heterogeneous Poisson process using a moving-window estimate 

Rλ̂  of the non-constant first-order intensity λ(x, y): 
 

     
)]([
)]([

),(ˆ
),(

),(

RC
RC

yx
yx

yxR

Area
Points

=λ           (HP1) 

 
where C(x, y)(R) is a circular moving window with radius R that is centered in 
cell (x, y), the operator Points2[X] counts the points of pattern 2 in a region X, 
and the operator Area[X] determines the area of the region X. This is basically 
a kernel estimate with fixed bandwidth R (e.g., Bailey and Gatrell 1995). As 
edge correction, the number of points in an incomplete circle is divided by the 
proportion of the area of the circle that lies within the study region.  
 
The algorithm for creating a pattern under a heterogeneous Poisson process is 
simple: a provisional point is placed at a random cell (x, y) in the study area, but 
this point is only retained with probability )],(ˆmax[/),(ˆ yxyx RR λλ  (the function 
max[X] determines the maximum of a variable X). This procedure is repeated 
until n points are distributed.  
 
The moving window estimator ),(ˆ yxRλ  involves a decision on an appropriate 
radius R of the moving window. Because the bandwidth R is the scale of 
smoothing, possible departure from this null model may only occur for scales r 
< R, and for small moving windows it will closely mimic the original pattern, 
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whereas a large moving window approximates CSR. 
 
 

3.2.2. Example (HP_1.res) 

1) highlight the data file "marcela.dat" in window Input data file 
2) select "List" in How are your data organized 
3) select "Analyze all data in rectangle" in Give modus of analysis 
4) select "Data are given as list in grid" in Select modus of data 
5) click button "Calculate index". 
6) Enable the check box "Calculate confidence interval" on 

the upper left. A window with settings for null models 
appears. Select "Pattern 1 and 2 random" and enable the 
check box "Heterogeneous Poisson". 

7) A window with settings for the moving window estimate of 
the heterogeneous Poisson appears: 
 

 
 
Select "Test only for pattern 1" (pattern 2 does not ex-
ist in this example), and select a radius R=15 for the 
moving window. 

8) click button "Calculate index". Programita now calculates 
the moving window estimate of the first-order intensity 
of the pattern (right graph): 

 

 
 

9) Click "ok" at the message window. Programita now performs 
the simulations of the heterogeneous Poisson null model 
and shows the patterns of the simulated null models. Af-
ter termination of the simulations a graph appears show-
ing the O-ring function of your data and the confidence 
envelopes of the heterogeneous Poisson null model. 
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3.3. Random labeling (RL) 

3.3.1. Background 

Univariate random labeling is a somewhat different approach to correct for un-
derlying environmental heterogeneity that can be used where a “control” pattern 
is available to act as surrogate for the varying environmental factor. The as-
sumption of univariate random labeling is that the pattern of controls was cre-
ated by the same stochastic process as the primary pattern (“cases”). Therefore, 
the n1 cases represent a random sub-sample of the joined pattern of the n2 con-
trol points and n1 case points. The test is devised by computing the univariate g-
function (or L-function) for the observed cases, then randomly re-sampling sets 
of n1 points from the (n1 + n2) points of the cases and controls to generate the 
confidence envelopes. Note that the univariate random labeling null model 
makes sense only if there are many more controls than cases. Univariate random 
labeling is closely related to bivariate random labeling.  
 

3.3.2. Example (RL_1.res) 

1) highlight the data file "marcela_RL.dat" in window Input 
data file. The data for pattern 1 (red dots) are identical to 
the data in example HP_1.res. The points of pattern 2 
(green dots) were created by the heterogeneous Poisson 
null model using a moving window with radius R = 15 (as 
in example HP_1.res) and are thus a surrogate for the 
heterogeneous first-order intensity of the pattern:  

 

 
 

2) select "List" in How are your data organized 
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3) select "Analyze all data in rectangle" in Give modus of analysis 
4) select "Data are given as list in grid" in Select modus of data 
5) click button "Calculate index". 
6) enable the check box "Calculate confidence interval" on 

the upper left. A window with settings for null models 
appears. Select "Random labeling". 

7) click "Calculate index". Programita now performs the 
simulations of the random labeling null model. After ter-
mination of the simulations a window appears: 

 

 
 

8) enable O12 which is the appropriate setting for univari-
ate random labeling. The other options are for the 
bivariate random labeling. Programita shows the univari-
ate g11-function (instead of the O-ring statistic) to-
gether with the confidence envelopes for the univariate 
random labeling null model: 
 

 
 
As expected, the confidence envelopes are non-symmetric 
to g = 1 because the null model corrected for the hetero-
geneity of the pattern.  
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3.4. Poisson cluster process (NS) 

3.4.1. Background 

The Poisson cluster process explicitly incorporates a clustering mechanism. Par-
ent events form a CSR process and each parent produces a random number of 
offspring according to a probability distribution f(). Offspring are spatially dis-
tributed around their parent according to some bivariate probability density h(). 
The final pattern consists of the offspring only. To avoid edge effects, the par-
ents must be simulated over a region larger than the study region but the off-
spring falling outside the study region are lost (Bailey and Gatrell 1995), or al-
ternatively the simulation of the cluster process may be implemented on a torus. 
If the number of offspring follows a Poisson distribution and the location of the 
offspring, relative to the parent individual, have a bivariate, Gaussian distribu-
tion, the offspring follow a Neyman-Scott process (e.g., Diggle 1983). The K-
function and the pair-correlation function g(r) for the Neyman-Scott process are 
given by: 
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where ρ is the intensity of the parent process, and σ2 the variance of the Gaus-
sian distribution that determines the locations of the offspring relative to the par-
ent. The unknown parameters ρ and σ must be fit by comparing the empirical 

)(ˆ rK  with the theoretical K-functions K(r, σ, ρ) (see Diggle 1983). 
 
Because σ is the standard deviation of the distance between each offspring and 
its parents, the cluster diameter yields ~ 2σ. For scales r below the cluster size 
(i.e., r < σ) the K-function can be approximated by K(r) = r2π + r2/(4ρσ2) 
(Diggle 1983), and the L- and g-functions are approximated by  
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From equation C2 follows that the parameter ρ and σ  cannot be determined in-
dependently if the K- and g-functions are fitted only at smaller scales r. Com-
parison of equation C2 with equation V1 shows that the compound parameter 
ρσ2 is directly related to the fraction c of the study region covered by the cluster: 
c = ρσ2/(ρσ2 + 1/4π). Thus, the simplest property of clustering (the area of the 
study region covered by the cluster) is influenced in the same way by the inten-
sity ρ of parents and by the variance σ2 of the distance between each offspring 
and its parents. The proportion c does not change if the intensity ρ of parents 
increases but the variance σ2 of the distance between each offspring and its par-
ent decreases accordingly. Clearly, the shape of the L- and g-function at larger 
scales r may allow separating the two parameters ρ and σ2. 
 
 
The g-function is an important tool to visually es-
timate the cluster size. If g(r)>1 there are more 
points at distance r than expected for a random pat-
tern, thus you have aggregation at scale r. For ex-
ample, if g(r) = 4, you find 4 times more points at 
distance r from an arbitrary point of the pattern 
than you would expected under a random pattern. 
In the small inlet figure above you see that g>1 for r < 10 cells and g ≈ 1 for r > 
10. Thus, the cluster size will be < 10 cells and you can restrict the interval of r 
for fitting the cluster model to, say rmax = 20. Deviations from the Neyman-Scott 
model at larger scales (which you may depict with the L-function) are caused by 
larger-scale effects.  

3.4.2. Implementation of the fit of σ and ρ 

Programita follows basically the approach of Diggle 1983 to fit equation C1 to 
your data, but uses the L-function instead of the K-function. Programita allows 
you to fit your data to a Neyman-Scott process by fitting the g-function, the L-
function, or both, the L-function and the g-function simultaneously to the 
theoretical functions. The simultaneous fit of the g- and L-function usually works 
best since the g-function is more sensible at smaller scales, and the L-function at 
larger scales.  
 
Programita minimizes three error functions with tuning constants r0, rmax, and c: 
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that measure the discrepancy between model and data. The constant r0 is the 
minimal scale of the fit, rmax the maximal scale of fit, and c a power transforma-
tion.  
 
The error function error_g (or error_L) gives the fraction of the total sum of 
squares of the transformed empirical g-function (or L-function) which is not ex-
plained by the model. The error functions are normalized to make them compa-
rable among fits with different adjustment intervals (r0, rmax) and data sets and to 
facilitate construction of confidence intervals around the estimates of σ and ρ. 
 

3.4.3. Selection of the tuning constants 

An immediate question is how to choose appropriate values for the tuning con-
stants. The first choice for the minimal scale is r0 = 1, however, if strong small-
scale effects (e.g., repulsion) overlay the clustering, one may select a minimal 
scale r0 > 1 to omit interference of the small-scale deviation from clustering.  
 
Note that Programita calculates the theoretical K-function using equation M2, 
thus accounting for the “memory” caused by a possible departure from the theo-
retical K-function at scale r0.  
 

 
 

Figure C1. Selection of the 

An appropriate choice for the maximal scale of the 
analysis for fitting a cluster process is the scale r 
at which the g-function well approximates the 
value 1. Remember, for g(r) ≈ 1 you find points at 
distance r as frequent as under a random pattern. 
Thus for g(r) ≈ 1 there is no aggregation at this 
scale. In the example on the left the choice would 
be rmax = 20. The g-function is not very sensible to 
larger-scale effects (i.e., effects larger than the 
cluster size, for example clustering of the clusters 
at larger scales), therefore selection of the maxi-
mal scale rmax is not very sensitive if you use only 
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maximal scale rmax of the fit. For 
fitting g(r) a transformation cg = 
0.5 was used, and for fitting L(r) 
a transformation cL = 1. 

the g-function for fitting the parameters σ and ρ. 
However, the L-function is sensible to such larger-
scale effects (figure C2, left), and if you use the L-
function for fitting the parameters σ and ρ you 
may restrict the range of rmax (as done in fig. C1). 

Alternatively, for depicting the peak of the L-function (which describes the 
smaller-scale clustering you are interested in), you may select a transformation 
with a large value of c (figure C2 right). 
 
A power transformation with c > 1 weights larger values of L(r) or g(r) more 
than a transformation with c = 1 (figure C2), whereas a transformation with c < 1 
weights larger differences less. Thus, to produce a fit that reproduces a peak in 
L(r) or g(r) well you may select a larger value of c (e.g., c = 4 as in figure C2  
 
 

 
 

Figure C2. Influence of the tuning constant c (equation C3) on the fit of the L-function. A 
weight c > 1 weights larger values of L(r) stronger than smaller values, and for c = 4 the fitting 
procedure fits basically the peak of the L-function (at scales 0 < r < 20).  
 
 
right). However, to fit intermediate values of L(r) or g(r) well, select c < 1 (e.g., 
c = 0.5 for fitting g(r) in figure C2 left). A reasonable range for the power trans-
formation c is c ∈ (0.1, 4).  
 
Programita allows you to repeat the fit with different selections of the tuning 
constants and to visually control the fit. There is no harm to try few different 
values of r0, rmax, and c in order to assess the extent to which the results are sen-
sitive to these choices.  
 

3.4.4. The settings window for the fit 

The settings window Fit of Neyman-Scott model contains the settings for the fitting 
procedure and shows the results and the interpretation of the best fit. The win-
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dow "Fit settings" allows you to select: 
 

• r0, the minimal scale used to fit the data  
• rmax, the maximal scale used to fit the data 
• σmin and σmax: the minimal and maximal value of σ used in the fit. 
• 100ρmin and 100ρmax: the minimal and maximal value of ρ used in the fit. 
• cg and cL: the power transformation for the g- and L-function, respec-

tively 
• whether you optimize only the g- or the L-function, or both simultane-

ously 
 
 
After clicking the button "fit" Programita performs the fit with the settings 
specified in the window "Fit settings". If you click the button "Zoom" Pro-
gramita determines the intervals (σmin, σmax) and (100ρmin, 100ρmax) that enclose 
the area in parameter space with an acceptable fit (i.e., error_g, error_L, or er-
ror_gL < 0.025). Next click "fit" and Programita runs a parameter search in the 
optimized area in the parameter space. After termination of the parameter search, 
Programita shows the error-surface of the fit (figure C4). The black area is the 
region in parameter space with an unacceptable fit with error > 0.025. If the best 
fit has an error > 0.025, Programita gives you a warning and continues with an 
acceptable error of 0.05 instead of 0.025.  
 
 

Figure C3. The window Fit of Ney-
man-Scott model to data that contains 
the settings for the fitting procedure 
(window "Fit settings") and shows 
the results (window "Fitted parame-
ter") and the interpretation of the best 
fit (window "Interpretation"). 

 
 
 
If you are satisfied with the fit, you can safe the settings and results of your fit in 
an ASCII file by clicking the button "Save results". This file will have the exten-
sion *.fit. To apply the Neyman-Scott cluster null model with the parameters 
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determined during the fitting procedure click the button "ok". The window Fit of 

Neyman-Scott model disappears and after clicking "Calculate index "Programita 
starts with the simulations of the null model. 
 
Note that Programita uses the parameters ρ and σ 
specified in the window “Fitted parameters” for the 
simulation of the null model. This offers you the 
possibility to create artificial data sets with any 
value of ρ and σ you find appropriate. To save the 
artificial data sets enable the check box “Save null 
models” in the window containing the settings of 
the null model.  
 

 
 
 

 

 

Figure C4. The error surface for the 
zoomed parameter area. The x-axis gives 
the parameter σ, the y-axis the parameter 
ρ. Note that the values of ρ (the y-axis) 
are shown with increasing values from 
top to bottom. Black: Non-acceptable fit 
with error > 0.025. Spectral colors from 
blue to magenta: increasingly poorer fit. 
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3.4.5. Constructing confidence intervals for σ and ρ 

The error functions error_g, error_L, and error_Lg give the fraction of the sum 
of squares of the transformed L- or g-functions of the data not explained by the 
fit. Therefore, confidence intervals for the estimate of the parameter σ and ρ can 
be estimated by determining the intervals inσ and ρ for which the error is 
smaller than a certain level of say, 0.025 or 0.01.  
 
The data files with the *.fit extension contain a list with the parameter values 
and the corresponding errors. You can use this data to produce a contour plot of 
the error and constructing the confidence intervals for the estimates of σ and ρ 
(figure C5). 
 

Figure C5. Contour plot of the 
error in dependence on the parame-
ters σ and ρ of the fit for determi-
nation of confidence intervals for σ 
and ρ. The confidence intervals for 
an error < 0.012 are shown as bold 
intervals at the axes. The best fit is 
indicated as red dot.  
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3.4.6. Univariate cluster process (NS_1.res) 

1) Highlight the data file "adults_real.dat" in window Input 
data file. This data set gives the location of adult trees at a 
meter scale, but has a resolution of 1 centimeter. 

2) select "List" in How are your data organized 
3) select "List with coordinates, no grid" in Select modus of 

data. A window opens asking you to provide a cell size. In-
sert "5.00". Thus, the cell size is 5m × 5m. 

4) click the button "change" in set maximal radius rmax and set the 
maximal scale r of the analysis to rmax = 50. 

5) click button "Calculate index", Programita shows you the 
pattern  

 

 
 

and calculates the O-ring function of the data.  
6) To determine Monte Carlo confidence intervals for the Ney-

man-Scott null model enable the check box "Calculate con-
fidence interval" on the upper left. A window with set-
tings for null models appears, select "cluster process". A 
window with a selection of cluster process null models ap-
pears, enable "univariate Neyman-Scott" and press ok. 

7) Programita now calculates the g- and the L-function for r 
= 1 to rmax and the window Fit of Neyman-Scott models to data appears. 
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8) You can specify the tuning constants r 0, r max, and c for 
the fit in the window "Fit cluster process". Visualization 
of the g-function in the window w Fit of Neyman-Scott models to data 
helps you to find the appropriate range r0 - r max. The g-
function approximates the theoretical value for a random 
pattern (g = 1) at scale r = 10. In practice, a good 
choice for r0 is more or less the double of this scale, 
thus select rmax = 20. The default r0 = 1 is appropriate 
since no repulsion occurs at small scales, and the default 
power transformations c = 0.5 for the g-function and c = 1 
for the L-function are reasonable starting values. To op-
timize simultaneously the g- and the L-function enable 
"both, L- and g-function". 

9) Click the button "fit" and Programita searches the parame-
ters of the Neyman-Scott model that simultaneously fits
the g- and L- function of your data best (red line: fit, 
black line: data): 

 

10) Programita automatically calculates initial intervals for 
the two parameters σ and ρ of the Neyman-Scott process. 
The minimal and maximal coordinates for σ (σmin, σmax) and ρ
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(ρmin, ρmax) are shown in the box "Fit cluster process". 
Programita uses 100 parameter values for ρ and σ [equidis-
tantly distributed within the intervals (σmin, σmax) and 
(100*ρmin, 100* ρmax)] to find the parameters of the Neyman-
Scott model that simultaneously fit the g- and L- function 
of your data best (See "Implementation of the fit ..."). 

11) The estimates of σbest ρbest are shown in the window "Fitted 
parameters", and the best fits of the g-and the L-function 
are shown as red line in the two graphs on the left, your 
data are shown as black line. Additionally, Programita 
shows the deviation between data and fit (the error sur-
face, right figure) plotted in the σ - ρ plane. The black 
cell indicates the estimated values of σ and ρ, dark blue 
color indicates a small deviation between data and fit, 
and colors with increasing spectral color indicate succes-
sively poorer fits.  

12) The small graph below the deviation shows the values of 
the deviation for points that satisfy ρσ2 = ρbest σ2best, 
plotted over the value of σ, and the red line is the an 
error_gL < 0.025 for an acceptable fit.  

13) The points that satisfy ρσ2 = ρbest σ2best are shown as grey 
cells. Remember that equation C2 implies that the value of 
ρσ2 may be estimated with higher precision that the values 
of ρ and σ separately. This plot helps you to control for 
this effect. 

14) To optimize the settings of the fit, you can manually 
change the minimal and maximal coordinates for σ (σmin, 
σmax) and 100*ρ (100*ρmin, 100* ρmax) in the window "Fit 
cluster process". As help you may compare the current set-
tings of σ and ρ (window "Fit cluster process") with the 
estimated values σbest ρbest (window "Fitted parameters"), 
and adjusting the new intervals only inside the area of a 
good fit as indicated by the plot of the deviation. In the 
example, the interval for σ is (0.5, 7), and the interval 
for 100*ρ is (0.01, 1): 

 

 
 

15) Alternatively, you can use the "Zoom" function of pro-
gramita. If you click the button "Zoom", Programita deter-
mines the intervals (σmin, σmax) and (100ρmin, 100ρmax) that 
enclose the area in parameter space with an acceptable fit 
with error_g, error_L, or error_Lg < 0.025. Next click 
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"fit" and Programita runs another parameter search in the 
optimised area of the parameter space (see figure C4).  

16) You can save the results of the fit in an ASCII file 
(click button "Safe results" and provide a data name). The 
file will have the extension *.fit. The results file con-
tains a list with the parameter values and the error. You 
can use this data for producing a contour plot of the er-
ror and constructing the confidence intervals for the es-
timates of σ and ρ (figure C5). 

17) Once you are satisfied with the fit, click "ok". The win-
dow Fit of Neyman-Scott models to data disappears and after clicking 
"Calculate index" Programita continues with the simula-
tions of the Neyman-Scott null model for estimation of 
confidence envelopes: 

 

 
 
The pattern of the data is shown on the left, and the 
simulated patterns of the null models are show on the 
right. After termination of the simulations, Programita
shows the results of the point-pattern analysis at the 
right instead of the simulated patterns: 
 

 
 

 
18) The simulation of 99 replicates of the Neyman-Scot null 

model with σbest = 2.888 and ρbest = 0.0023303 show that the 
data are well within the confidence envelopes of the null 
model. The left figure above shows the univariate O-ring 
statistic and the figure on the right the univariate L-
function. 

19) Note that the confidence envelopes of the L-function are 
relatively wide for larger scales. This is because the L-
function is more sensitive at larger scales.  
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3.4.7. Univariate cluster process and recruits (NS_2.res) 

1) This example analyzes the spatial pattern of recruits of 
example NS_4.res. We show that the recruits are clustered 
at two different scales.  

2) Highlight the data file "recruits.dat" in window Input data 
file. This data set gives the location of recruits in cells 
with a cell size of 1 m2. 

3) select "List" in How are your data organized 
4) select "Data are given as list in grid" in Select modus of 

data.  
5) click the button "change" in set maximal radius rmax and set the 

maximal scale r of the analysis to rmax = 30. 
6) click button "Calculate index", Programita shows you the 

pattern:  
 

 
 
and calculates the O-ring function of the data. Visuali-
zation of the data show that the recruits are clearly 
clustered. 

7) In a first step we investigate the small-scale clustering 
of the recruits. To determine Monte Carlo confidence in-
tervals for a Neyman-Scott null model enable the check 
box "Calculate confidence interval" on the upper left. A 
window with settings for null models appears, select 
"cluster process". A window with a selection of cluster 
process null models appears, enable "univariate Neyman-
Scott" and press ok. 

8) Programita calculates the g- and the L-function for r = 1 
to rmax and the window Fit of Neyman-Scott models to data appears. 
You can specify the tuning constants rmin, rmax, and c for 
the fit in the window "Fit cluster process": 

9) Select rmax = 1 and r0 = 15 since we are interested in the 
aggregation at small scales. To optimize simultaneously 
the g- and the L-function enable "both, L- and g-
function". 

10) Click the button "fit" and Programita searches the pa-
rameters of the Neyman-Scott model that simultaneously 
fit the g- and L- function of your data best (red line: 
fit, black line: data). We find  

• σbest = 4.8 and ρbest = 0.000135 (some 33 parents) 
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11) The simulation of 19 replicates of the Neyman-Scot null 
model show that the data are at small scales well within 
the confidence envelopes of the null model 
(NS_2_small_scale.res), but the data are at larger scales 
partly above the confidence interval (i.e., r = 13, 17-
20, and 24-27): 

 

 
 

12) Next we investigate the clustering at larger scales 
(i.e., r = 15 - 100). Repeat the steps 1 - 8 and select 
rmax = 15 and r0 = 100. The default power transformations
c = 0.5 for the g-function and c = 1 for the L-function 
are reasonable starting values. To optimize the g- and 
the L-function simultaneously enable "both, L- and g-
function". 

13) Click the button "fit" and Programita searches the pa-
rameters of the Neyman-Scott model that simultaneously 
fits the g- and L- function of your data best (red line: 
fit, black line: data). To optimize the parameter fit, 
press the button "Zoom". Programita now determines the 
probable range of the parameters. We find  

• σbest = 14.4 and ρbest = 0.000095 (some 24 parents). 
Press the button "ok" and then "Calculate index". 

14) The simulation of 19 replicates of the Neyman-Scot null 
model show that the data are for larger scales well 
within the confidence envelopes of the null model 
(NS_2_larger_scale.res): 

 

 
 
but as expected, recruits are significantly clustered at 
small scales r = 1 - 10. Overall we find that the re-
cruits are clustered at two different spatial scales. To 
adequately describe such a situation we would need a dou-
ble-cluster model where the parents events are not a ran-
dom pattern, but follow itself a Neyman-Scott process. 
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3.4.8. Univariate cluster process and adult trees (NS_3.res) 

1) This example analyzes the spatial pattern of adult trees 
(which we already analyzed in example NS_1.res), but now 
at the same spatial resolution as the pattern of recruits 
in the previous example (NS_2.res).  

2) Highlight the data file "adults.dat" in window Input data file. 
This data set gives the location of adult trees in cells 
with a cell size of 1 m2. 

3) select "List" in How are your data organized 
4) select "Data are given as list in grid" in Select modus of 

data.  
5) click the button "change" in set maximal radius rmax and set the 

maximal scale r of the analysis to rmax = 100.  
6) click button "Calculate index", Programita shows you the 

pattern and calculates the O-ring function of the data. 
The visualization of the data shows that the adults are 
clearly clustered. 

7) To determine Monte Carlo confidence intervals for the 
Neyman-Scott null model enable the check box "Calculate 
confidence interval" on the upper left. A window with 
settings for null models appears, select "cluster proc-
ess". A window with a selection of cluster process null 
models appears, enable "univariate Neyman-Scott" and 
press ok. 

8) Programita calculates the g- and the L-function for r = 1 
to rmax = 100 and the window Fit of Neyman-Scott models to data ap-
pears. You can specify the tuning constants rmin, rmax, and 
c for the fit in the window "Fit cluster process": 

9) Select rmax = 1 and r0 = 100 since we are interested in 
the overall aggregation of the adults. The default power 
transformations c = 0.5 for the g-function and c = 1 for 
the L-function are reasonable starting values. To opti-
mize the g- and the L-function simultaneously enable 
"both, L- and g-function". 

10) Click the button "fit" and Programita searches the pa-
rameters of the Neyman-Scott model that simultaneously 
fits the g- and L- function of your data best (red line: 
fit, black line: data). To optimize the parameter fit, 
press the button "Zoom". Programita now determines the 
probable range of the parameters. We find  

• σbest = 14.1 and ρbest = 0.000083 (some 21 parent 
events). 

This estimates accord well with the results from example 
NS_1.res (which used a cell size of 25m2 instead of 1m2) 
with σbest = 5*2.88 = 14.4 and 23 parents. Note that these 
estimates are strikingly similar to the estimates for re-
cruits at larger scales (i.e., a cluster size of some 
29m, and some 24 parent events) obtained in the previous 
example.  

11) Before continuing with the simulation of the null model 
select a ring width of 3 cells; otherwise the O-function 
will be slightly jagged. Press the button "ok" and then 
"Calculate index". 

12) The simulation of 19 replicates of the Neyman-Scot null 
model show that the data are well within the confidence 
envelopes of the cluster null model (NS_3.res. However, 
at scales r = 1 - 3 there is a tendency to a stronger 
clustering than accommodated by the Neyman-Scott cluster 
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null model which, however, is not significant: 
 

. 
 
 

3.4.9. Univariate cluster process and dead trees (NS_3b.res) 

1) This example analyzes the spatial pattern of dead trees at 
the same spatial resolution as the pattern of adult trees 
(NS_2.res) and recruits (NS_3.res) in the previous exam-
ples. 

2) Highlight the data file "dead.dat" in window Input data file. 
This data set gives the location of adult trees in a reso-
lution of 1cm. 

3) select "List with coordinates, no grid" in Select modus of 
data. A window opens asking you to provide a cell size. In-
sert "1.00". Thus, the cell size is 1m × 1m. 

4) click the button "change" in set maximal radius rmax and set the 
maximal scale r of the analysis to rmax = 100. 

5) click button "Calculate index", Programita shows you the 
pattern and calculates the O-ring function of the data. 
The visualization of the data shows that the adults are 
clearly clustered: 

 

 
 

6) To determine Monte Carlo confidence intervals for the 
Neyman-Scott null model enable the check box "Calculate 
confidence interval" on the upper left. A window with set-
tings for null models appears, select "cluster process". A 
window with a selection of cluster process null models ap-
pears, enable "univariate Neyman-Scott" and press ok. 

7) Programita calculates the g- and the L-function for r = 1 
to rmax = 100 and the window Fit of Neyman-Scott models to data ap-
pears. You can specify the tuning constants rmin, rmax, and 
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c for the fit in the window "Fit cluster process". 
8) Select rmax = 1 and r0 = 100 since we are interested in the 

overall aggregation of the adults. The default power 
transformations c = 0.5 for the g-function and c = 1 for 
the L-function are reasonable starting values. To optimize 
the g- and the L-function simultaneously enable "both, L- 
and g-function". 

9) Click the button "fit" and Programita searches the parame-
ters of the Neyman-Scott model that simultaneously fits 
the g- and L- function of your data best (red line: fit, 
black line: data). To optimize the parameter fit, press 
the button "Zoom". Programita now determines the probable 
range of the parameters: 

 

 
 

10) We find σbest = 6.92 and ρbest = 0.0002 (some 49 parents). 
Interestingly, adult trees do not show the tendency to 
double-clustering of adult trees (NS_3.res) or recruits 
(NS_2.res).  

11) We can compare the g- or K-functions of different patterns 
through the compound parameter σ2ρ. This compound parame-
ter determines the steepness of the L-function at small 
scales and the proportion c of the study region covered by 
the cluster (equation C2). We find that dead trees are 
most clustered (their cluster covers some 11% of the study 
region), followed by adult tress (their cluster covers 
some 17% of the study region) and the less clustered are 
recruits (their larger-scale cluster covers some 20% of 
the study region). 

12) Click the button "Calculate index". The simulation of 19 
replicates of the Neyman-Scot null model show that the 
data are well within the confidence envelopes of the clus-
ter null model (NS_3b.res): 
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3.5. Univariate double-cluster process (DC) 

3.5.1. Background 

In some cases a univariate pattern may show clustering at two different scales. 
Imagine a forest where the suitable habitat for a given species is heterogene-
ously distributed, perhaps due to different orientation on mountain slopes of 
local differences in soil. This may cause a patchy (or clustered) distribution of 
this species at a larger scale. However, a limited seed dispersal radius or much 
localized safe sites (created by a dead tree) may cause a small-scale clustering 
of the recruits, and as a result the overall pattern of the recruits follows a dou-
ble-clustered structure which cannot be well described by the simple cluster 
process equation C1.  
 
We will now introduce the double-clustered univariate Neyman-Scott process 
which is an extension of the univariate Neyman-Scott process equation C1: 
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where ρ2 is the intensity of the parent process, and σ2

2 the variance of the Gaus-
sian distribution that determines the locations of the offspring relative to the 
parent. The simple cluster process equation DC1 assumes that the parents show 
a random pattern whereas the double-clustered process assumes that the parents 
follow itself the cluster process equation C1 with parameters σ1

2 and ρ1. To not 
mix up the two types of parents we define three types of points: 

• parents 
• type 1 points (= the offspring of the parents) 
• type 2 point (= the offspring of type 1 points) 

but analyze the univariate structure of type 2 points without explicit knowledge 
of the locations of the of parents and type 1 points. The bivariate case where the 
locations of the type 1 points are known, however, is discussed in a separate 
section for bivariate null models (Bivariate double-cluster process for antece-
dent condition).  
 
The univariate g- and K-functions expected under a univariate double-clustered 
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Neyman-Scott process are:  
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with the four parameters: 
 

• σ2
2, the parameter that gives the variance of the locations of type 2 

points relative to their parents (= type 1 points). 
• ρ2, the intensity of the parents of the type 2 points. 
• σ2

1, the parameter that gives the variance of the locations of type 1 
points relative to their parents. 

• ρ1 is the intensity of the parents of type 1 points. 
 
The first term in equation DC2 (= 1) describes the situation where the points of 
the univariate pattern are independent from each other (i.e., type 2 points are not 
clustered around their type 1 parents), the second term describes the effect of 
clustering of type 2 points around their parents, and the third term describes the 
compound effect of the clustering of type 1 points and the clustering of type 2 
points around type 1 points. The variance σsum

2 is the combined variance that 
describes the interaction of the clumping at the two scales σ2

2 and σ2
1.  

 
If the parents are a random pattern (i.e., σ2

1 → ∞) then σ2
sum → ∞ and conse-

quently, the third term disappears and equation DC2 collapses back to equation 
DC1. If type 2 points are independent from their parents (i.e., σ2

2 → ∞) it fol-
lows that σ2

sum → ∞ and equation DC2 collapses, as expected, back to a CSR 
process with g(r) = 1.  
 
Fitting of the observed g- and K-functions to a double-cluster process as de-
scribed by equation DC2 and equation DC3 could be done analogously to that 
of the simple univariate cluster process, but fitting all 4 parameters simultane-
ously instead of two parameters simultaneously as done for fitting the simple 
cluster process. This procedure is not yet implemented in Programita. However, 
we would expect that the scale of clustering of the parents is larger than the 
scale of clustering of type 2 points around their type 1 parents (i.e., σ2

1 << σ2
2 

and consequentlyσ2
sum << σ2

2). Otherwise, a situation with σ2
1 > σ2

2 does not 
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really make sense because in this case the smaller-scale clusters of the parents 
would basically function like one parent and the pattern can not be distinguished 
from a simple clustered pattern.  
 
If the parents show clustering at a larger scale and if the clustering of type 2 
points around type 1 points occurs at a smaller scale, however, we can separate 
the scales because in this case the contribution of the clustering of the offspring 
to equation DC2 disappears for scales r above the cluster size 2σ2. Therefore, a 
fit of the data to the expected g- and K-function of a simple cluster process 
equation DC1 at larger scales r > 2σ2 will reveal the unbiased parameters σ1 and 
ρ1 of the larger-scale clustering of the parents. To estimate the missing parame-
ters σ2 and ρ2 of the small-scale clustering of type 2 points, we therefore first 
determine the (unbiased) parameters σ1 and ρ1 using a simple cluster process 
and use in a next step equations equation DC2 and equation DC3 to obtain an 
unbiased estimate of the smaller-scale clustering of the offspring.  
 
We illustrate the analysis of double-clustered univariate patterns with three ex-
amples, three artificial data sets with 

1. σ2
1 >> σ2

2 
2. σ2

1 << σ2
2 

 
and the data of the recruits we already analyzed in example NS_2 and which 
showed indications for double-clustering.  
 
 
 

3.5.2. Double-cluster process σ2
1 >> σ2

2 (DC_1.res) 

This pattern was created using a parents pattern with 136 points and parameters  
• σ1 = 14.1, ρ1 = 0.000169 (some 42 parents) 

and the parameters of the offspring were 
• σ2 = 4, ρ2 = 0.00054 (some 136 parents, i.e., all type 1 points are parents) 

We analyze first the clustering of the pattern at larger scale using the simple 
cluster process equation DC1 and apply then the double-clustered model to de-
termine the parameters of the small-scale clustering. 
 
First step: univariate analysis at larger scales with simple 
cluster model 
 

1) Highlight the data file "DC1_uni_c.dat" in window Input data 
file. 

2) select "List" in How are your data organized 
3) select "Data are given as list in grid" in Select modus of 

data. A window opens asking you to provide a cell size. In-
sert "1.00".  

4) click button "Calculate index", Programita shows you the 
pattern and calculates the O-ring function of the data:  
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5) For univariate analysis of this pattern at larger scale 
enable enable the check box "Calculate confidence inter-
val" on the upper left. A window with settings for null 
models appears, select "cluster process". A window with a 
selection of cluster process null models appears, enable 
"univariate Neyman-Scott" and press ok. 

6) Programita calculates the g- and the L-function of the 
data and the window Fit of Neyman-Scott models to data appears. You 
can specify the tuning constants rmin, rmax, and c for the 
fit in the window "Fit cluster process". 

7) To estimate the scale where the contribution of the small-
scale clustering to the double-clustered g-function disap-
pears, select rmax = 1 and r0 = 15 and click the button 
“fit”. Programita now shows the L- and g-function of the 
data and the fit at small scales: 

 

 
 

8) The contribution of small-scale clustering to the g-
function may disappear at scale r = 15 and the g-function 
approximates the value 1 roughly at scale r = 80. There-
fore, select rmax = 15 and r0 = 80 for assessment of the 
parameters of the large-scale clustering and click the 
button “fit”. Programita now shows the L- and g-function 
of the data and the fit at small scales: 
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13) To optimize the parameter fit, press the button "Zoom" and 
ten “Fit”. Programita now determines the probable range of 
the parameters: 

 

 
 

We find σbest = 13.66 and ρbest = 0.0001215 (some 30 par-
ents).  
 
Saving the results of the fit (DC_uni_c.fit) and plotting 
the error surface shows that the fit determined well the 
known parameter (σ = 14) under which the pattern was cre-
ated. However, the number of parents is slightly underes-
timated (30 instead of 42). This is because some of the 
larger-scale clusters of the parents overlap and function 
as one single cluster. 
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Error surface for con-
struction of confidence 
intervals for the fit. 
Contour plot of the error 
in dependence on the pa-
rameters σ and ρ of the 
fit The confidence inter-
vals for an error < 0.010
are shown as bold inter-
vals at the axes. The 
best fit is indicated as 
red dot.  
 

 
 

9) To simulate the process click in the windows Fit of Neyman-
Scott models to data “ok”, select a ring width of dr = 3, and 
“Calculate Index”. Simulation of the Neyman-Scott null 
model with larger scale clustering shows indeed good ac-
cordance at scales r > 15, however (as expected), the 
small-scale clustering is not captured 
(DC1_uni_c_largescale.res):  
 

 
 
 

Second step: univariate analysis with double-cluster model 
 

1) Highlight the data file "DC1_uni_c.dat" in window Input data 
file. 

2) select "List" in How are your data organized 
3) select "Data are given as list in grid" in Select modus of 

data. A window opens asking you to provide a cell size. 
Insert "1.00".  

4) click button "Calculate index", Programita shows you the 
pattern and calculates the O-ring function of the data. 

5) For univariate analysis of this pattern assuming a dou-
ble-clustered process enable the check box "Calculate 
confidence interval" on the upper left. A window with 
settings for null models appears, select "cluster proc-
ess". A window with a selection of cluster process null 
models appears, enable "Univariate double cluster". 

6) The windows Fit of Neyman-Scott models to data and “Univariate dou-
ble-cluster Neyman-Scott” appear. Select the option “Uni-
variate” and provide the results of a univariate analysis 
of pattern 1 at larger scale (r = 15 - 80): 
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• 13.66 and 100ρbest = 0.01215 (some 30 parents): 
and click “ok” in the window “Univariate double-cluster 
Neyman-Scott” and again “ok” in the window “Null models”. 

7) Programita calculates the g- and the L-function for r = 1 
to rmax and the window Fit of Neyman-Scott models to data appears. 
Because we fit the small scale structure of the pattern, 
select rmax = 1 and r0 = 50 and “g-function” (i.e., adjust 
only the g-function) and click the button “fit”. (The L-
function is more sensitive at larger scales). 

8) Programita now searches the parameters of the bivariate 
Neyman-Scott model that simultaneously fits the g- and L- 
function of your data best (red line: fit, black line: 
data). 

9) Programita finds for the initial parameter intervals the 
best fit  

• σ = 3.056 and 100ρ = 0.07084 (some 177 parents): 
 

 
 
The results are reasonable estimates of the parameters 
under which the pattern was created (σ2 = 4, ρ2 = 0.00054 
(some 136 parents). Programita estimates the cluster size 
a bit too small (3.1 instead of 4) and the number of par-
ents a bit too high (177 instead of 136). 

10) To find out whether this differences are due to uncer-
tainty in the estimates of the large scale clustering we 
repeat the fit with the known parameters of the large-
scale clustering 

• 14.1, 100ρ1 = 0.0169 (some 42 parents): 
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The estimate for the cluster size (σ = 3.056) coincides 
with the result from the previous analysis, but the number 
of parents is closer to the known value (155 instead of 
136).  

11) These results indicate that the estimation of the cluster 
size is relatively insensitive to the uncertainty in the 
previous estimate of the parameters of the large-scale 
clustering, but that the estimate of the number of par-
ents depends more sensitively on the correct estimate of 
the parameters of the large-scale clustering. Because of 
the stochastic nature of the simulation process and the 
finite number of points, there will be always some varia-
tion in the realized parameters in respect to the origi-
nal parameters under which the process was simulated. 

 
 
 

3.5.3. Double-cluster process σ2
1 << σ2

2 (DC_2.res) 

This pattern was created using a parents pattern with 136 points and parameters  
• σ1 = 3.687, ρ1 = 0.0002416 (some 60 parents) 

and the parameters of the offspring were 
• σ2 = 14, ρ2 = 0.00054 (some 136 parents, i.e., all type 1 points are par-

ents) 
 
We analyze first the clustering of the pattern at larger scale using the simple 
cluster process equation DC1 and apply then the double-clustered model to de-
termine the parameters of the small-scale clustering. 
 
First step: univariate analysis at larger scales with simple 
cluster model 
 

10) Highlight the data file "DC2_uni_c.dat" in window Input data 
file. 

11) select "List" in How are your data organized 
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12) select "Data are given as list in grid" in Select modus of 
data. A window opens asking you to provide a cell size. In-
sert "1.00".  

13) click button "Calculate index", Programita shows you the 
pattern and calculates the O-ring function of the data:  

 

 
 

14) For univariate analysis of this pattern at larger scale 
enable the check box "Calculate confidence interval" on 
the upper left. A window with settings for null models ap-
pears, select "cluster process". A window with a selection 
of cluster process null models appears, enable "univariate 
Neyman-Scott" and press ok. 

15) Programita calculates the g- and the L-function of the 
data and the window Fit of Neyman-Scott models to data appears. You 
can specify the tuning constants rmin, rmax, and c for the 
fit in the window "Fit cluster process". 

16) To analyze the cluster structure of the patter select rmax 
= 1 and r0 = 150 and click the buttons “fit”, “Zoom” and 
“Fit”. Programita now shows the L- and g-function of the 
data and the fit at small scales: 

 

 
 

17) There is no indication that this pattern may be a double-
clustered pattern, the theoretical g- and L-functions (red 
line) fit the g- and L-functions of the data (black lines) 
well. We find  

• σbest = 17.4 and 100ρbest = 0.01 (some 25 parents)  
which approximate the known parameters of the larger-scale 
clustering of the parents [σt = 14.1 and 100ρbest = 0.0169 
(some 42 parents)]. 

18) To simulate the process click in the windows Fit of Neyman-
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Scott models to data “ok”, select a ring width of 3 cells (dr = 
3) and “Calculate Index”. Simulation of the Neyman-Scott 
null model shows indeed good accordance at all scales 
(DC2_uni_c_largescale.res):  
 

 
 
 
Second step: univariate analysis with double-cluster model 
Because the cluster size of the parents is much smaller than the 
cluster size of the parents, the univariate analysis using the 
simple cluster model equation DC1 did not indicate the double-
clustering under which the process was created. To find out if 
Programita reveals the known parameters of the large-scale clus-
tering under knowledge of the parameters of the small-scale clus-
tering of the parents we now analyze the pattern with the double-
cluster model.  
 

1) Highlight the data file "DC2_uni_c.dat" in window Input data 
file. 

2) select "List" in How are your data organized 
3) select "Data are given as list in grid" in Select modus of 

data. A window opens asking you to provide a cell size. In-
sert "1.00".  

4) click button "Calculate index", Programita shows you the 
pattern and calculates the O-ring function of the data. 

5) For univariate analysis of this pattern assuming a double-
clustered process enable the check box "Calculate confi-
dence interval" on the upper left. A window with settings 
for null models appears, select "cluster process". A win-
dow with a selection of cluster process null models ap-
pears, enable "Univariate double cluster". 

6) The windows Fit of Neyman-Scott models to data and “Univariate dou-
ble-cluster Neyman-Scott” appear. Select the option “Uni-
variate” and provide the parameters of the small-scale 
clustering of the parents: 

• 3.687 and 100ρbest = 0.02416 (some 60 parents): 
and click “ok” in the window “Univariate double-cluster 
Neyman-Scott” and again “ok” in the window “Null models”. 

7) Programita calculates the g- and the L-function for r = 1 
to rmax and the window Fit of Neyman-Scott models to data appears. Se-
lect rmax = 1 and r0 = 50 and click the buttons “fit”, 
“Zoom” and “fit”. 

8) Programita now searches the parameters of the bivariate 
Neyman-Scott model that simultaneously fits the g- and L-
function of your data best (red line: fit, black line: 
data). Programita finds for the initial parameter inter-
vals the best fit  

• σ = 14.383 and 100ρ = 0.02506 (some 63 parents): 
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The results are in excellent accordance with the known pa-
rameters. This result indicates that the information on the 
small-scale clustering of the parents was hidden in the 
pattern of the offspring but may only be revealed with si-
multaneously fitting the four parameters of the double-
clustered model.  

 
 
 

3.5.4. Double-clustered recruits (DC_3.res) 

9) Highlight the data file "recruits.dat" in window Input data 
file. This data set gives the location of recruits at a me-
ter scale, but has a resolution of 1 centimeter. 

10) select "List" in How are your data organized 
11) select "List with coordinates, no grid" in Select modus of 

data. A window opens asking you to provide a cell size. 
Insert "1.00".  

12) click button "Calculate index", Programita shows you the 
pattern and calculates the O-ring function of the data:  
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13) For univariate analysis of this pattern assuming a dou-

ble-clustered process enable the check box "Calculate 
confidence interval" on the upper left. A window with 
settings for null models appears, select "cluster proc-
ess". A window with a selection of cluster process null 
models appears, enable "Univariate double cluster". 

14) The windows Fit of Neyman-Scott models to data and “Univariate dou-
ble-cluster Neyman-Scott” appear. Select the option “Uni-
variate” and provide the results of a univariate analysis 
of pattern 1 at larger scale (r = 15 - 100) (example 
NS_2.res): 

• σ = 14.4 and 100ρ = 0.0095 (some 24 parents). 
 

Click “ok” in the window “Univariate double-cluster Ney-
man-Scott” and again “ok” in the window “Null models”. 

15) Programita calculates the g- and the L-function for r = 1 
to rmax and the window Fit of Neyman-Scott models to data appears. 
Select rmax = 1 and r0 = 100 and click the button “fit”.  

16) Programita now searches the parameters of the bivariate 
Neyman-Scott model that simultaneously fits the g- and L-
function of your data best (red line: fit, black line: 
data). 

17) Programita finds for the initial parameter intervals the 
best fit  

• σ = 4 and 100ρ = 0.02150 (some 54 parents)  
18) To optimize the parameter fit, press the buttons "Zoom"

and “Fit”. Programita finds the best estimates: 
• σ = 3.83 and 100ρ = 0.02165 (some 54 parents) 

Thus, the scales of clustering a different: there is a 
large-scale clustering with σ = 14 which may correspond 
to a heterogeneity of the suitable habitat and a small-
scale clustering with σ = 4 which corresponds to cluster-
ing of recruits inside the larger-scale clusters. The 
fitted g- and L- functions approximate the data very 
well: 
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3.6. Hard-core process (HC) 

3.6.1. Background 

A hard-core process is the simplest extension of CSR to describe small-scale 
regularity where points have a minimal distance δ (figure HC1). In this case the 
g-function yields: 
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and the K-function can easily be calculated using equation D4: 
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Figure HC1. (A) Hardcore pattern where the points have a minimal distance δ. This corresponds 
to the case where the points have a finite size and are represented non-overlapping disks of ra-
dius δ/2. (B) The theoretical L-function for a hardcore process given through equation HC3. 
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Figure HC1A shows an example of a pattern created by a hardcore process with 
a hardcore radius δ = 4 which corresponds to non-overlapping disks with radius 
2. The resulting L-function (equation HC3) is shown in figure HC1B. Note that 
the entire departure from the expected L-function under CSR (i.e., L = 0) at 
scales > δ results from the hardcore and the "memory" of the L-function which 
arises because the K-function is accumulative (equation HC2). Dixon (2002) and 
Stoyan and Stoyan (1994) review further analytical formulas of the K- and g-
function under different hard-core processes.  
 
A hard core null model does not allow two points to have a distance smaller than 
the minimal distance δ. However, in real situation the probability that a point can 
be found at distance d from another point may not be a step-function as assumed 
under a hard-core null model (equation HC1), but rather a function that de-
creases with decreasing distance d, thus defining a soft-core null model. 
 

3.6.2. Implementation of the hard-core null model 

For numerical simulation of a univariate hard-core process provisional point are 
placed (following the specific null model selected) and the distance d to the near-
est accepted point is determined. The provisional points are accepted if the 
distance d > δ (i.e., no overlap of the disk of the two points), otherwise it is re-
jected.  

3.6.3. Implementation of the soft-core null model 

For implementation of a soft-core null model Programita uses a probability pHC 
of a provisional point to be accepted that varies between 0 and 1, depending on 
the distance d to the nearest (accepted) neighbor, and an exponent p that gives 
the degree of "softness" (figure HC2): 
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For p = 0, we obtain the hardcore model, and for p > 0 a soft core model.  
 



USER MANUAL FOR PROGRAMITA 

 

78 

 

 
Figure HC2. The probability to accept a provi-
sional point in dependence on the distance d to its 
nearest neighbor. For a hardcore null model the 
point is rejected if d < δ (i.e., the two hard-core 
disks overlap). For a softcore null model the 
probability pHC of acceptance is pHC = d(1/p). 

 
 
 

 
 
Figure HC3. Example HC_1.res. (A): pattern of the data file HC1.dat that was created with a 
hardcore process and δ = 4 (this corresponds to a disk with radius 2 cells in the window Hard 
core null model). (B): The O-ring statistic for the pattern shown in (A) and confidence envelopes 
for 19 simulations of a hardcore null model with radius of pattern 1 of 2 cells. (C) The L-function 
for the pattern shown in (A) and confidence envelopes for 19 simulations of a hardcore null 
model with radius of pattern 1 of 2 cells. The analyses of (B) and (C) confirm that HC1.dat is a 
random pattern where each point has a hard core radius of 2. Note that (B) and (C) seems to 
suggest δ = 3 and not δ = 4 as expected. This is because of the definition of scales r. For exam-
ple, cells with distance d = 4.45 belong to scale r = 4. 
 

3.6.4. Hard core null model (HC_1.res) 

1) highlight the data file "HC1.dat" in window Input data file. The 
data file was created with a hardcore null model and a 
minimal distance of 4 cells between points. 

2) select "List" in How are your data organized 
3) select "Analyze all data in rectangle" in Give modus of analysis 
4) select "Data are given as list in grid" in Select modus of data 
5) click button "Calculate index". 
6) Enable the check box "Calculate confidence interval" on 

the upper left. A window with settings for null models ap-
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pears. Select "Pattern 1 and 2 random" and enable the 
checkbox "Hard core". The window Hard core null model appears: 

 
7) enable the checkbox "Radius 

of pattern 1" (univariate 
analysis) and provide the 
hardcore radius of pattern 
1. The minimal distance be-
tween two points is the dou-
ble of the hardcore radius. 
Next provide the hardcore 
radius and the exponent. The 
example is for a hard-core 
null model, therefore select 
the exponent p = 0, click 
"ok", and click the button 
"Calculate index".  

8) Programita applies now the 
hardcore null model for cal-
culation of the confidence 
envelopes shown in figure 
HC3B. 

 

3.6.5. Soft core null model (HC_2.res) 

1) Same settings as in example HC_1, but select in the window 
Hard core null model an exponent p > 0 (p = 0.5 in the example). 

2) Click the button "Calculate index". Programita applies now 
the softcore null model for calculation of the confidence 
envelopes shown below: 

 

 
 

3) Note that the confidence envelopes show a soft core with a 
reduced (but not zero) probability of having points closer 
than r = 3. The data set "HC1.dat" that was created with a 
hard core model does not satisfy the softcore null model 
at scales r = 1, 2, and 3. 

 
.
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3.6.6. Heterogeneous Poisson and hardcore (HC_3.res) 

This example shows the combination of the hardcore null model with the hetero-
geneous Poisson null model shown in example HP_1. Provisional points are only 
accepted if they satisfy the condition for heterogeneous Poisson and the 
condition for hard core simultaneously. 
 

1) highlight the data file "marcela.dat" in window Input data file 
2) select "List" in How are your data organized 
3) select "Analyze all data in rectangle" in Give modus of analysis 
4) select a maximal radius of 15 cells in set maximal radius rmax. 
5) select "Data are given as list in grid" in Select modus of data 
6) click button "Calculate index". 
7) A window with settings for null models appears. Select 

"Pattern 1 and 2 random" and enable the checkbox "Hard 
core". 

8) the window Hard core null model appears. Enable the checkbox 
"Radius of pattern 1" (univariate analysis) and provide 
the hardcore radius of pattern 1 (a value of 2). The mini-
mal distance of two points is the double of the hardcore 
radius (i.e., δ = 4). Provide the exponent p = 0 for hard-
core and click "ok". The window Hard core null model disappears. 

10) enable the check box check box "Heterogeneous Poisson" in 
the window Select a null model. The window Settings for heter. Poisson 
appears. Select "Test only for pattern 1" (pattern 2 does 
not exist in this example), and select a radius R=15 for 
the moving window.  

9) click button "Calculate index". Programita now calculates 
the moving window estimate of the first-order intensity of 
the pattern. Click "ok" at the message window and Pro-
gramita performs the simulations of the heterogeneous 
Poisson null model for calculation of the confidence enve-
lopes shown below: 
 

 
 
The confidence envelopes were constructed with 99 repli-
cate simulations of the combined heterogeneous Poisson and 
hardcore null model. The data are almost within the confi-
dence envelopes, with O11(4) being only slightly above the 
confidence interval. 
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3.6.7. Combined cluster and hardcore (HC_4.res) 

This example shows the combination of the hardcore null model with a univari-
ate Neyman-Scott cluster null model and continues the analysis of example 
NS_4.res. The pattern of adult trees showed at a fine resolution of 0.25 m a 
marked hard-core up to 1m and a peak at some 2.5 m. Here we investigate 
whether the hard core and the pear at 2m may be explained be a combined hard-
core and cluster null model. We analyze the bivariate pattern of adult trees and 
recruits in example HC_7.res. 
 

1) Highlight the data file "adults_real.dat" in window Input 
data file. This data set gives the location of adult trees and 
recruits at a meter scale, but has a resolution of 1 cen-
timeter. 

2) select "List" in How are your data organized 
3) select "List with coordinates, no grid" in Select modus of 

data. A window opens asking you to provide a cell size. In-
sert "0.5", thus using a cell size of 50cm.  

4) click the button "change" in set maximal radius rmax, set the 
maximal scale r of the analysis to rmax = 50, and select a 
ring width of dr = 3.  

5) click button "Calculate index", Programita shows you the 
pattern and calculates the O-ring function of the data.  

6) To determine Monte Carlo confidence intervals for the 
bivariate Neyman-Scott null model enable the check box 
"Calculate confidence interval" on the upper left. A win-
dow with settings for null models appears, select "cluster 
process". A window with a selection of cluster process 
null models appears, enable "univariate Neyman-Scott" and 
press ok. 

7) Programita calculates the g- and the L-function for r = 1 
to rmax and the window Fit of Neyman-Scott models to data appears.  

8) Select rmax = 15 and r0 = 200. To optimize the g- and the 
L-function simultaneously enable "both, L- and g-
function". Click the button "fit" and Programita searches 
the parameters of the bivariate Neyman-Scott model that 
simultaneously fits the g- and L- function of your data 
best (red line: fit, black line: data).  

9) To optimize the parameter fit, press the button "Zoom". 
Programita now determines the probable range of the pa-
rameters. Next, press "fit" and Programita now searches 
the best fit. We find σbest = 29.5 and ρbest = 0.0000205. 

11) Enable the check box “Hard core” and the window Hard core null 
model appears. Enable the checkbox "Radius of pattern 1" 
(univariate analysis) and provide the hardcore radius of 
pattern 1 (a value of 2). The minimal distance of two 
points is the double of the hardcore radius (i.e., δ = 4). 
Provide the exponent p = 0 for hardcore and click "ok". 
The window Hard core null model disappears.  

12) click button "Calculate index" and Programita performs the 
19 simulations of the combined cluster and hard-core null 
model: 
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Indeed, the combined hard-core and cluster null model de-
scribes the data well, only the peak at 2m (4 cells) re-
mains significant. Thus, adult trees show a strict repul-
sion and are at least 2 m apart.  
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3.7. Recommendations for selection of univariate null models 

In the following we give recommendations for the selection of appropriate null 
models for univariate point-pattern analysis and we provide an exploratory step-
by-step protocol. Note that point-pattern analysis is a descriptive analysis. Even 
if a particular null model describes your pattern well, it is not appropriate to con-
clude that the mechanism behind the null model is the mechanism responsible 
for your pattern. Other mechanisms may lead to exactly the same pattern. How-
ever, point-pattern analysis helps to characterize your pattern and to put forward 
hypotheses on the underlying mechanisms that should be tested in subsequent 
steps in the field.  
 

1. Visualize the pattern, define a preliminary study region and plot the sec-
ond-order statistics )(ˆ rL  and )(ˆ rO . 

2. If the size of your biological objects cannot be neglected (i.e., they are 
large and do not overlap) you might combine a hard-core null model with 
the null models suggested in the next steps. You may apply a hard or soft-
core null model if )(ˆ rO  << λ for scales 1- r0 (compare figure HC3). 

3. If there is no indication for strong aggregation (clearly visible clusters in 
the pattern or a )(ˆ rO  typical for virtual aggregation) use CSR as the null 
model for detecting aggregation or inhibition. Virtual aggregation (large 
scale clustering) is indicated by a constant )(ˆ rO  over a range of scales, 
and at this range )(ˆ rO  is well above the intensity λ of the pattern (e.g., 
Fig. 3B in Wiegand and Moloney 2004). Smaller-scale clustering is indi-
cated by a steep linearly increasing )(ˆ rL  at smaller scales (e.g., example 
NS_1). The cluster size is slightly below the value of r where )(ˆ rL  is 
maximal. 

4. If step (3) indicates virtual aggregation (i.e. large clusters) exclude the 
gaps (or use smaller rectangular sub-regions) and apply CSR only in the 
sub-region without gaps (or in the smaller plot). Think about a biological 
explanation for the heterogeneity encountered. Perhaps there are obstacles 
in the study region, or clear environmental heterogeneity that prevent 
points from occurring in the gap.  

5. If there is a biological explanation for the heterogeneity encountered in 
step (3) (e.g., clear differences in soil), you might map the environmental 
factor and use this map to obtain an intensity function of a heterogeneous 
Poisson process. Otherwise, you can use the pattern itself to estimate the 
non-constant first-order intensity λ using the moving window estimator 
for simulation of a heterogeneous Poisson process null model. Alterna-
tively, if there is a surrogate pattern for the environmental heterogeneity 
(e.g., the locations of a different, more common plant species that is hy-
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pothesized to be subject to the same environmental factor), use univariate 
random labeling as the null model for testing whether your pattern is more 
(or less) clustered than the control. 

6. If there is no obvious environmental heterogeneity, your pattern may be a 
realization of a cluster process. Use )(ˆ rL  to obtain rough (initial) esti-
mates of the parameter ρ and σ of a Neyman-Scott process and fit the pa-
rameters using the methods given in Diggle (1983). Use the estimated pa-
rameters ρ and σ to simulate confidence envelopes for the Neyman-Scott 
process null model. Clearly, there are a number of other point-processes 
you might fit to your data. However, because of small number of points 
and noisy data, you might not be able to statistically separate them. 

7. If there is small-scale regularity and larger scale clustering, the expected 
L-function for the Neyman-Scott process needs to consider the small-scale 
regularity because the L-function is accumulative and conserves at larger 
scales some “memory” on the small-scale regularity. This can be done 
analogously to equation M1. Alternatively, one may use only the pair-
correlation function g (which has no memory) to fit the unknown parame-
ters ρ and σ, but omitting the smaller scales r. 
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4.  Bivariate Null Models 
Interpreting a bivariate K-function or O-ring statistic can be confusing because it 
differs from the univariate case. In the univariate case, visualization of the pat-
tern usually provides an intuitive idea of the first and second-order properties of 
a pattern. However, in the bivariate case we analyze the spatial relation between 
two spatial patterns at different spatial scales where each pattern individually 
may have a complicated spatial structure. Confusion may also arise because 
there is not one simple and intuitive null model such as CSR, and because a null 
model based on CSR (i.e., randomization of both patterns) leads to an inadequate 
test for absence of interaction between the points of bivariate patterns. 
 
For bivariate patterns, three conceptually different null models correspond to an 
absence of interaction between the two types of points:  

• Independence assumes that the two patterns were generated by two in-
dependent processes (e.g., one process generated the locations of shrubs, 
and the other process generated the locations of grass tufts). Thus, the 
expected absence of interaction between the two types of points corre-
sponds to an absence of interaction between the two patterns.  

• Random labeling assumes that both patterns were created by the same 
stochastic process (or were subject to the same constraining factors), and 
that the labels (or "marks") are randomly distributed among the locations 
of the joined pattern. Thus, the absence of interaction between the two 
types of points corresponds to an absence of spatial correlation in the oc-
currence of the labels. 

• Antecedent condition assumes that the two types of points were created 
in sequence (e.g., adult trees did not change during the development of 
recruits). Creation of pattern 1 occurred independently on pattern 2 (be-
cause it did not yet exist) but creation of pattern 2 may be influenced by 
presence of points of pattern 2. Therefore, under an antecedent condition 
the null model needs to conserve the locations of pattern 1 and a specific 
hypothesis on the null model for pattern 2 needs to be formulated. In the 
simplest case the null model for pattern 2 is a CSR process where the ex-
pected absence of interaction between the two types of points corre-
sponds to an absence of facilitation or competition exerted by type 1 
points over type 2 points.  

 
Departure from independence indicates that the two processes display attraction 
or repulsion, regardless of the univariate pattern of either group by itself whereas 
the interpretation of departure from random labeling is more complicated. The 
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distinction between independence and random labeling requires some care and 
consideration (Dixon 2002). When there is no relationship between two proc-
esses, the two approaches lead to different expected values of K12(r) and O12(r), 
and to different procedures for generating null models (Goreaud and Pèlissier 
2004). Assessment of departure from random labeling is conditional on the uni-
variate structure of the joined pattern whereas assessment of departure from in-
dependence is conditional on the univariate structure of the component patterns.  
 
Since bivariate point-pattern analysis investigates the relation of points of pattern 
2 in respect to points of pattern 1 one may specify only the null model for the 
stochastic process that created pattern 2, but keep the locations of pattern 1 fixed 
(antecedent condition). This approach need to be used in cases where pattern 1 
was unchanged during the creation of pattern 2. An example of such an 
antecedent condition is seedlings in relation to adult trees. Another case where 
one may keep the locations of pattern 1 fixed and specify only a null model for 
pattern 2 is the relation between shrubs (fixed) and grass tufts. In this case the 
null model distributes grass tufts at random in the area not occupied by shrubs. 
Departure from the null model (e.g., there are more tufts in the neighbourhood of 
shrubs than expected under this null model) may indicate facilitation. Because a 
null model with an antecedent condition specifies only the null model of the sec-
ond pattern, all univariate null models (e.g., heterogeneous Poisson, hard core, 
Neyman-Scott cluster null model) may be used. In this antecedent condition is a 
hermaphrodite null model with characteristic of a univariate null model (i.e., 
only pattern 2 is simulated whereas pattern 1 remains unchanged) and with char-
acteristic of a bivariate null model (the statistic of interest is the bivariate L-
function or the bivariate O-ring statistic, i.e., the relation of type 2 points to type 
1 points is analyzed).  
 
The expected values of the bivariate g- and L-functions under independence are 
g12(r) = 1 and L12(r) = 0, whereas the expected values of the bivariate g- and L 
functions under random labeling are determined by the spatial structure of the 
univariate joined pattern, thus L12(r) = L1+2,1+2(r) and g12(r) = g1+2,1+2(r). Failure 
to distinguish between random labeling and independence may lead to the analy-
sis of data by methods which are largely irrelevant to the problem at hand 
(Diggle 1983). Random labeling and independence are equivalent only if all the 
component processes are homogeneous Poisson processes.  
 
Random labeling offers a number of ways for investigating the spatial structure 
of a bivariate pattern in detail. In the section "bivariate random labeling" we will 
present and interpret the different variants of random labeling.  
 
If the null hypothesis to test is absence of interaction between the two types of 
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points, the nature of the data and phenomena under study (i.e., whether the proc-
esses that created pattern 1 and 2 acted simultaneously [independence] in se-
quence [random labeling] or antecedent condition) provide guidelines for the 
selection of independence or random labeling as appropriate null model (see e.g., 
Goreaud and Pèlissier 2004). In some cases, the nature of the data and the biol-
ogy of the species involved may make the choice between random labeling and 
independence relatively straightforward. In other cases, however, this may be 
difficult and open to debate and interpretation and other more specific null mod-
els may be used instead. 
 
 
Beside independence, random labeling and antecedent condition there are a 
number of more complex bivariate point processes (e.g., bivariate cluster proc-
esses, or bivariate hard- and soft-core processes) that may be used to respond to 
specific biological questions. For example, a bivariate Neyman-Scott cluster 
process may be used to describe a clustered environmental heterogeneity that 
affects both patterns in the same way.  
 
 

4.1. Independence 

4.1.1. Background 

Testing for independence is not that straight forward than testing for CSR in the 
univariate case because inferences are conditional on the second-order structure 
of each pattern (Dixon 2002). This is because the theoretical values of K12(r) and 
O12(r) do not depend on CSR of the component patterns and therefore no as-
sumption can be made about models for either of the component patterns. Thus, 
the null model of CSR is not appropriate to test for independence; the separate 
second-order structures of the patterns need to be preserved in their observed 
form in any simulation of the null model, but one has to break the dependence 
between the two patterns. One way of achieving this is by simulations that in-
volve random shifts of the whole of one component pattern relative to the other. 
In practice, a rectangular study region is treated as a torus where the upper and 
lower edges are connected and the right and left edges are connected. 
 
We present three examples for the application of the toroidal shift null model, 
one based on real data, and additionally two artificially generated data sets to 
demonstrate the ability of this null model to detect known departure from inde-
pendence. 
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4.1.2. Example Indep_1.res 

1) highlight the data file "A1.dat" in window Input data file. The 
two patterns are disturbances observed at a plot of south-
ern German grassland, mapped is a 10m × 10 m area with a 
resolution of 100 × 100 cells. The points of pattern 1 
(read) are cells with ant disturbances and the points of 
pattern 2 (green) are cells with rabbit disturbances: 
 

 
Note that each of the two patterns, taken individually, 
shows marked clustering. 

2) select "List" in How are your data organized 
3) select "Analyze all data in rectangle" in Give modus of analysis 
4) select "Data are given as list in grid" in Select modus of data 
5) click button "Calculate index". 
6) Enable the check box "Calculate confidence interval" on 

the upper left. A window with settings for null models ap-
pears. Select "Toroidal shift". 

7) click "Calculate index". Programita now performs the simu-
lations of the independence null model and determines the 
confidence envelopes. 

8) The confidence envelopes of the bivariate O-ring statistic 
for the toroidal-shift null model reveal independence of 
the two types of disturbance, although the patterns show 
certain non-significant tendencies to repulsion at smaller 
scales r = 1, 2 and attraction at scales r = 13 - 17. The 
tendency for repulsion at small scale arise because it was 
difficult in the field to recognize cells with both, ant 
and rabbit disturbance and some cells with ant and rabbit 
disturbances my actually be mapped as cells with rabbit 
disturbance only. As a consequence, the bivariate O-ring 
function depicts a tendency to repulsion: 
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4.1.3. Example Indep_2.res 

This example corresponds to a situation where creation of pattern 1 was not in-
fluenced by pattern 2, but points of pattern 2 experienced facilitation from point 
of pattern 1. We used a simple attraction process to simulate the points of pattern 
2 in dependence on a given pattern 1 that was previously created by a CSR proc-
ess. The probability patt(d) to accept a provisional point of pattern 2 with a near-
est neighbour of pattern 1 at distance d is:  
 

   
⎪⎩

⎪
⎨
⎧

>

≤−=
δ

δ
δ

d

dd
dp

p

for 0

for )(1)(att          (Indep1) 

 
where δ = 6 and p = 0.1 in our example. This process is a sort of "inverse" soft-
core process; compare equations (Indep1 and Indep2). Note that the points of 
pattern 2 are, as a result of the non-random creation process, aggregated at scale 
r = 1.  
 

1) highlight the data file "attraction1.dat" in window Input 
data file. Pattern 1 is a random pattern and pattern 2 was cre-
ated with an explicit aggregation mechanism in respect to 
pattern 1: random provisional points of pattern 2 were 
only accepted if they had a nearest neighbor of pattern 1 
at distance d ≤ 6 (i.e., δ = 6), and the probability of 
acceptance increased with decreasing distance d to a point 
of pattern 1 (equation Indep1): 
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The univariate analyses show that pattern 1 is indeed a 
random pattern, whereas the univariate structure of pat-
tern 2 shows (a weak but) significant aggregation at scale 
r = 1. 

2) select "List" in How are your data organized 
3) select "Analyze all data in rectangle" in Give modus of analysis 
4) select "Data are given as list in grid" in Select modus of data 
5) click button "Calculate index". 
6) Enable the check box "Calculate confidence interval" on 

the upper left. A window with settings for null models ap-
pears. Select "Toroidal shift". 

7) click "Calculate index". Programita now performs the simu-
lations of the independence null model and determines the 
confidence envelopes: 
 

 
 

8) The toroidal shift null model that test for independence 
of the two patterns is rejected for spatial scales r = 1-
3. There are more points of pattern 2 at distances r ≤ 3 
than expected under independence. Thus, application of the 
null model for independence reveals the a priori known at-
traction at smaller scales. The distance dependent prob-
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ability of acceptance of an provisional point is patt(d) = 
0.16 for d = 1, but for d = 4 it decreased to patt(d) = 
0.04. Therefore the aggregation mechanism is weak and non-
significant at nearest neighbour distances d >3. 

9) This example illustrates the difficulty to predict the 
second-order characteristics of a bivariate pattern visu-
ally (pattern 1: random, pattern 2: random but weak aggre-
gation at scale r = 1 and attraction of pattern 2 to pat-
tern 1 at scales r = 1, 2, and 3). 

 
 
 

4.1.4. Example Indep_3.res 

In this example we used a bivariate soft-core process to simulate repulsion of 
points of pattern 2 in relation to points of pattern 1 that were previously created 
by a CSR process. The parameters of the bivariate soft-core process are: radius = 
3 and exponent p = 5 (for pattern 1), radius = 3 and exponent p = 5 (for pattern 
2), and the exponent for repulsion of pattern 2 by pattern 1 was p = 0.1. Thus, 
points of pattern 2 are placed at random with respect to already accepted points 
of pattern 2, but the probability pHC(d) to accept a provisional point of pattern 2 
with a nearest neighbour of pattern 1 at distance d is:  
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⎨
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where δ = 3 +3. Note that the univariate analysis of pattern 2 reveals aggregation 
at scales r = 1 - 5 which is a result of is non-random creation process. 
 

1) highlight the data file "repulsion1.dat" in window Input data 
file. Pattern 1 is a random pattern and pattern 2 was created 
with an explicit repulsion mechanism: random provisional 
points of pattern 2 were only accepted if they had a near-
est neighbor distance of at least δ = 6 to a point of pat-
tern 1 and the probability of acceptance decreased with 
increasing distance to a point of pattern 1 (equation In-
dep2): 
 



THORSTEN WIEGAND 

 

93 

 
 

 
The univariate analyses show that pattern 1 is indeed a 
random pattern, whereas the univariate structure of pat-
tern 2 shows aggregation at scale r = 1 and 3. Note that 
the aggregation of pattern 2 is an indirect effect induced 
by the repulsion to pattern 1 (i.e., points of pattern 2 
had are squeezed in gaps of pattern 1). 

2) select "List" in How are your data organized 
3) select "Analyze all data in rectangle" in Give modus of analysis 
4) select "Data are given as list in grid" in Select modus of data 
5) click button "Calculate index". 
6) Enable the check box "Calculate confidence interval" on 

the upper left. A window with settings for null models ap-
pears. Select "Toroidal shift". 

7) click "Calculate index". Programita now performs the simu-
lations of the independence null model and determines the 
confidence envelopes: 
 

 
 

8) The toroidal shift null model is rejected for spatial 
scales r = 1-4. There are less points of pattern 2 at dis-
tances r < 5 than expected under independence. Thus, ap-
plication of the null model for independence reveals the a 
priori known repulsion at smaller scales. 
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4.2. Bivariate random labeling 

In the case of random labeling we ask not about the interaction between two 
processes, but we investigate whether or not the labels "type 1" and "type 2" 
have a random structure within the given spatial structure of the joined pattern. 
Numerical implementation of the random labeling null model involves repeated 
simulations using the fixed n1 + n2 locations of pattern 1 and 2, but randomly 
assigning “case” labels to n1 of these locations (Bailey and Gatrell 1995). There-
fore, the expected bivariate g- or L-function under random labeling is the uni-
variate g- or L-function of the joined pattern.  
 
(Goreaud and Pèlissier 2004) discuss the differences between the null hypotheses 
independence and random labeling and derive rules for the appropriate use of 
these null models if the researcher wants to test for absence of interaction be-
tween the two types of points. If the two types of points correspond to two 
"populations" whose specific spatial pattern can a priory be the result of differ-
ent processes (e.g., plants of different species), then the expected absence of in-
teraction between the two types of points corresponds to an absence of interac-
tion between the two populations. On the other hand, if the two types correspond 
to some events affecting a posterory the individuals of a single "population" 
(e.g., tree dead or disease spread), then the absence of interaction between the 
two types of points corresponds to an absence of interaction in the occurrence of 
these events.  
 
There are several variants of random labeling which each valuate different bio-
logical effects. In the following we will provide interpretations for these variants. 
 

4.2.1. Different possibilities to asses departures from random labeling 

Under random labeling both component patterns taken separately represent “ran-
dom thinning” of the joined pattern, and from their definition, K-functions and g-
functions are invariant under random thinning. Therefore we would expect that  
 
    g12(r) = g21(r) = g11(r) = g22(r).           (RL1) 
 
Because the component patterns taken separately are “random thinning” of the 
joined pattern, we expect additionally the identities: 
 
 
       g12(r) = g1+2,1+2(r) 
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       g12(r) = g1,1+2(r)            (RL2) 
       g21(r) = g2,1+2(r) 
 
where "1+2" symbolizes the joined locations of pattern 1 and 2. Equation RL1 
suggests that a useful way of investigating departures from random labeling is to 
assess the significance of differences amongst estimates of g12(r), g21(r), g11(r), 
and g22(r) (Bailey and Gatrell 1995). Using differences instead of g- or K-
functions has the advantage that the expected value under random labeling is 
always zero, whereas the univariate g- or L-function of the joined pattern (which 
is the expected value under random labeling) can have any shape. 
 
The expectation g12(r) = g1,1+2(r) (equation RL2) suggests assessment of the sig-
nificance of the quotient g12(r)/g1,1+2(r). The expected value of this quotient un-
der random labeling is g12(r)/g1,1+2(r) = 1.  
 
The advantage of using differences or quotients is that the results are easier to 
visualize and interpret because the expected values under random labeling are 
zero for differences and one for quotients. Additionally, the analysis of the dif-
ferences and quotients allows deeper insight into the relation of the two patterns 
because each pairwise difference or quotient evaluates different biological ef-
fects. The difference )(ˆ)(ˆ 1211 rgrg −  for example evaluates whether points of 
type 1 tend to be surrounded by other points of type 1, while )(ˆ)(ˆ 2211 rgrg −  
evaluates whether one pattern is more (or less) clustered than the other (Dixon 
2002). 
 
In order to properly interpret these differences and quotients, we go back to the 
grid-based definitions of the bivariate g-function (equation I8). Note that the 
same arguments presented here for the g-function are also valid for K-functions, 
the only difference is that the rings have to be replaced by circles.  
 
The bivariate O-ring statistic and the g-function are estimated with: 
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where Rw

i,k(r) is the ring with radius r and width w centered on the kth point of 
type i, ni is the total number of points of type i in the study region of area A, the 
operator Pointsj[X] count the points of type j in a region X and the operator 
Area[X] counts the number of cells in the region X. The bivariate O-ring statis-
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tic relates the average number of type 2 points in rings with radius r centered in 
type 1 points (nominator of equation RL3) to the average number of cells of 
these rings (denominator of equation RL3), thus it calculates the average number 
of points per area (if a cell is the unit area).  
 
We introduce the following definitions: 
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is the average number of type j points in rings with radius r centered in type i 
points, and 
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is the average number of cells in rings with radius r centered in type i points. 
With this definitions, equation RL3 simplifies to )(/)()(ˆ

11212 rArPrOw = . 
 
In the bivariate case (i.e., i ≠ j), the term ni Pij gives the total number of ordered 
pairs of type i and type j points. The number of ordered pairs is symmetric, thus: 
n1 P12 = n2 P21. We will use this relation when deriving interpretations of the 
differences and quotients of g-functions. 
 
If the mean area of rings centered in points of pattern 1 is the same as the mean 
area of rings centered in points of pattern 2 (i.e., A1 = A2) edge effects are equili-
brated and none of the two patterns has the tendency to occur closer (or further 
away) to the edge of the study region. Note that the edge correction used in our 
grid-based and numerical implementation (Wiegand and Moloney 2004) differs 
from the analytical edge correction usually used (e.g., Goreaud and Pèlissier 
1999).  
 
From the definition of Ai and Pij we derive the relations for the joined pattern: 
 
    A1+2 = (n1 A1 + n2 A2)/(n1 + n2)           (RL6) 
 
    P1+2, 1+2 = [n1 (P11 + P12) + n2 (P22 + P21)]/(n1 + n2)   (RL7) 
 
where Pi,1+2 = Pi1 + Pi2. Without loosing generality we can assume, when inter-
preting departure of a given quotient from the expected value under random la-
beling, that both patterns have the same number of points (i.e., n1 = n2). This is 
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because g- and K-functions are invariant under random thinning. However, the 
number of points of the pattern determines whether the confidence envelopes are 
wide (low number of points) or narrow (higher number of points), and the confi-
dence envelopes of a randomly thinned pattern with n1 = n2 will be wider than 
that of the original pattern with n1 << n2. 
 
 

4.2.2. Variant 1, the bivariate g-function g12  

Some authors compare the bivariate g- or L-function to confidence envelopes 
generated by randomization of the labels (e.g., Goreaud and Pèlissier 2004). A 
value of )(ˆ12 rg  above the random labeling confidence envelopes indicates that 
type 2 points are more frequent at distance r around type 1 points than expected 
under the random labeling null hypothesis. This test does basically compare the 
bivariate g-function )(ˆ12 rg  to the univariate g-function )(ˆ 21,21 rg ++  of the joined 
pattern (see example RL_2), but it uses only n1 randomly selected points out of 
n1 + n2 points for construction of the confidence envelopes. For this reason the 
confidence envelopes tend to be wide if n1 << n2 and narrow if n1 >> n2. This is a 
disadvantage of this assessment method. 
 
To interpret departure of )(ˆ12 rg  from random labeling we analyze the conditions 
under which )(ˆ12 rg  = )(ˆ 21,21 rg ++ , thus  
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If we assume that edge effects are equilibrated (i.e., A1 = A2) and considering 
identity he n1 P12 = n2 P21, we find the solution 
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which yields 
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Therefore, variant 1 assesses departure from random labeling by comparing the 
bivariate g-function with the density-corrected average of the two univariate g-
functions of the two component patterns. In the simplest case when both patterns 
have the same number of points (i.e., n1 = n2), we find that variant 1 compares 
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the bivariate g12 directly to the average of the two univariate g functions [i.e., g12 
= (0.5g11 + 0.5g22)], and for n1 ≠ n2 the averaging is slightly more complex.  
 
When using variant 1 we assess departure from random labeling relatively to the 
structure of the univariate component patterns. If  )(ˆ12 rg  > )(ˆ 21,21 rg ++  type 
points 2 are at scale r stronger correlated to points 1 than expected by the aver-
age aggregation of the two component patterns. 
 
 

4.2.3. Variant 2, the difference g12 - g11 

The difference )(ˆ)(ˆ 1211 rgrg −  evaluates whether type 1 points tend to be sur-
rounded by other points of type 1 (i.e., points of type 1 are correlated at scale r). 
With the definitions of equations RL4 and RL5 we find  
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Thus, a positive difference 0)(ˆ)(ˆ 1211 >− rgrg  indicates that rings with radius r 
around type 1 points contain relatively more type 1 than type 2 points. The term 
"relatively" refers to the correction that considers the different intensities of pat-
tern 1 and 2 (i.e., dividing P12 by the total number n2 of type 2 points in the study 
region, and dividing P11 by the total number n1 of type 1 points in the study re-
gion). In other words, type 1 points are relatively more frequent at distance r 
around type 1 points than type 2 points. Thus, a positive difference 

)(ˆ)(ˆ 1211 rgrg −  indicates that type 1 points are at distance r positively correlated 
with other type 1 points. 
 

4.2.4. Variant 3, the difference g21 - g11 

A negative difference )(ˆ)(ˆ 1121 rgrg −  indicates that type 1 points are more fre-
quent in rings around other type 1 points than in rings around type 2 points. With 
the definitions of equations RL4 and RL5, the identity n1 P12 = n2 P21 and the 
assumption that edge effects are equilibrated (i.e., A1 = A2) we find:  
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Thus, the difference )(ˆ)(ˆ 1121 rgrg −  is equivalent to the difference 

)(ˆ)(ˆ 1112 rgrg −  if edge effects are equilibrated. 
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4.2.5. Variant 4, the difference g22 - g11 

The difference )(ˆ)(ˆ 1122 rgrg −  does not evaluate the correlation of type 1 or type 
2 points directly, but evaluates whether pattern 2 is more clustered than pattern 
1, conditional on the structure of the joined patterns. Thus, it evaluates whether 
the given difference in the univariate clustering of pattern 1 and 2 is probable 
under the overall clustering of the joined pattern.  
 
Note that a given bivariate pattern may show significant departure from random 
labeling, but the difference )(ˆ)(ˆ 1122 rgrg −  may not depict this departure. 
 

4.2.6. Variant 5, the difference g12 - g21 

The difference )(ˆ)(ˆ 2112 rgrg −  evaluates the symmetry of the bivariate g-
functions, i.e., whether or not type 2 points surround type 1 points in the same 
way as type 2 points are surround by type 1 points. The difference 

)(ˆ)(ˆ 2112 rgrg −  is positive if:  
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and considering the identity n1P12 = n2P21 this is equal to A2 > A1. Thus, the dif-
ference )(ˆ)(ˆ 2112 rgrg −  evaluates directly whether the mean number of cells in 
rings around type 1 points (= A1) is the same as the mean number of cells in rings 
around type 3 points (= A2). The mean number of cells in rings around type i 
points (= Ai) will be smaller than the number of cells in a ring with the same ra-
dius because some points are located close to the boarder of the study region and 
have incomplete rings (figure D1). 
 
 

4.2.7. Variant 6, the quotient g12/g1,1+2 

A quotient )(ˆ/)(ˆ 21,112 rgrg + < 1 indicates that type 2 points are less frequent in 
rings around type 1 points than type 1 and 2 points in rings around type 1 points. 
With the definitions of equations RL4 and RL5 we find: 
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Equation RL14 yields one if n1P12 = n2P11. Therefore testing g12/g1,1+2 < 1 is 
equivalent to testing g11 - g12 > 0. If g12/g1,1+2 < 1, type 1 points are at distance r 
positively correlated with other type 1 points. If g12/g1,1+2 > 1, the two types of 
points are positively correlated at distance r. 
 
Equation RL14 indicates that estimation of g12/g1,1+2 requires only counting the 
number of type 1 and type 2 neighbors of type 1 points, but it does not require to 
count empty cells as necessary for estimation of the bivariate g-functions. There-
fore, the value of the quotient does not depend on the univariate structure of the 
joined pattern, but only on the number of pairs of points at different distances.  
 
Note that the quotient in equation RL14 is equivalent to the definition of the 
bivariate g-function for an irregularly shaped study region that comprises only 
cells with points. This provides an elegant and simple method for estimation of 
this quotient with Programita; the only change compared to calculation of 

)(ˆ12 rg  is the selection of the modus "Irregularly shaped study region" instead of 
"All points in rectangle". Clearly, the input data need to be a list in grid ("data 
are given as list in grid" in window select modus of data) and include only cells 
with points.  
 

4.2.8. Variant 7, comparing the quotients g12/g1,1+2 and g21/g2,1+2 

We showed in the last section that the quotient g12/g1,1+2 provides information on 
departure from random labeling from the viewpoint of type 1 points (i.e., correla-
tion of type 1 points). Conversely the quotient g21/g2,1+2 provides information on 
departure from random labeling from the viewpoint of type 2 points. It is inter-
esting to compare both viewpoints, thus to assess whether of not the correlation 
of type 1 to type 1 points and type 2 to type 2 points is symmetric. This question 
can be answered by testing the difference  
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Simple arithmetic manipulations, including the identity n1 P12 = n2 P21, show that 
the difference of equation RL15 is zero if  
 
    )()()()( 11122221 rPrPrPrP +=+ .         (RL16) 
 
Equation RL15 yields a positive difference if type 2 points have at distance r 
more neighbors than type 1 points have neighbors. This indicates that type 2 
points are mainly located in areas of higher point density whereas type 1 points 
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are located in areas of lower point density. Thus, variant 7 evaluates intervention 
of a first-order effect.   
 
Similarly to the quotient g12/g1,1+2, Programita estimates equation RL15 if you 
select g12 - g21 and the modus "Irregularly shaped study region" instead of  the 
modus "All points in rectangle" in the in window select modus of data. 
 
 
 

4.2.9. Evaluation of the different variants of random labeling 

We now summarize the biological effects and their interpretation which are de-
picted by the different variants of random labeling. Table 1 shows that there are 
basically 5 different features of bivariate patterns that can be tested with bivari-
ate random labeling: 

• Correlation: Variants 6, 2, and 3 investigate whether type 1 points are 
correlated with each other (conditional on the given structure of the 
joined pattern). These variants of random labeling depict positive or 
negative correlation of one type of points (or conversely negative or 
positive between the two types of points) in a direct way and have a 
straight-forward interpretation. Note that the correlation structure of the 
two patterns might or might not be symmetric (e.g., type 1 points may 
show correlation but type 2 points not). Programita computes variant 6 
significantly quicker than the equivalent variants 2 or 3 because variant 6 
does not require to count empty cells. 

• Interaction with heterogeneity of joined pattern: Variant 7 reveals in-
formation about the symmetry of the correlation of type 1 and type 2 
points. A positive difference g12/g1,1+2 - g21/g2,1+2 indicates that type 2 
points have at distance r more neighbours (= type 1 and type 2 points) 
than type 1 points. Thus, type 2 points are mainly located in areas with 
higher intensity of the joined pattern whereas type 1 points are mainly 
located in areas of lower intensity. Thus, departure from random labeling 
depicted with variant 7 indicates that the process that assigns the labels 
to the points interacts with the heterogeneity of the joined pattern. This is 
an interesting feature of random labeling that is of special interest e.g., in 
case of fire (with a spreading mechanism that depends on the density of 
plants) or spread of a tree disease (that depends on distance between 
trees). 

• Correlation between patterns vs aggregation of component patterns. 
Variant 1 compares the bivariate g-function to the average of the g-
functions of the univariate component patterns (which is the expected g-
function under random labeling). This test of random labeling may have 
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wide confidence envelopes if n2 >> n1.  
• Univariate structure of component patterns: Variant 4 compares the 

aggregation (or regularity) of the univariate component patterns and re-
veal whether one pattern is more clustered (or less regular) than the 
other, conditional on the structure of the joined pattern. This test does 
not necessarily detect departure from random labeling. 

• Equilibrated edge correction: Variant 5 investigates if one pattern 
tends to be closer to the boarder of the study region than the other (i.e., 
the edge correction is not equilibrated). Equilibrated edge correction is 
an assumption for the interpretation of variants 0, 1, 3, and 4. 
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Basic relations tested by the different variants of random labeling and interpretation. Pij(r) is the 
average number of type j points in rings with radius r centered in type I points, Ai(r) is the aver-
age number of cells in rings with radius r centered in type i points, ni is the number of points of 
pattern I in the study region comprising A cells. With this definitions, the grid-based estimate of 
the bivariate g function yields g12(r) = (A/n2) P12(r)/Ai(r). 
 
     
Variant Test Assumption 

for  
interpretation 

Basic relation tested 
 with the variant 

Interpretation of test for scale 
r  

          
1 g12(r) < g1+2,1+2(r) A1 = A2 g12 > b2 g11 + (1 - b2)g22 

 
with b = n1/(n1 +n2) 

Type 2 points are stronger 
correlated than expected by 
the average aggregation of 
the two component pat-
terns. 

 " A1 = A2 
n1 = n2 

g12 > (g11 + g22)/2  
          
2 g12(r) - g11(r) < 0  — P12/n2 < P11/n1 Type 1 points are relatively 

more frequent at distance r 
around type 1 points than 
type 2 points around type 1 
points.  
Type 1 points are positively 
correlated with other type 1 
points. 
 

2a g21(r) - g22(r) < 0  — P21/n1 < P22/n2 Type 2 points are positively 
correlated with other type 2 
points.           

3 g21(r) - g11(r) < 0 A1 = A2 P12/n2 < P11/n1 
 

Equivalent to variant 2 if A1 = 
A2 

3a g12(r) - g22(r) < 0 A1 = A2 P21/n1 < P22/n2 Equivalent to variant 2a if A1 
= A2           

4 g22(r) - g11(r) >0 A1 = A2 P22/n2 > P11/n1 Pattern 2 is more clustered 
than pattern 1, conditional 
on the structure of the joined 
patterns.           

5 g12(r) - g21(r) >0 — A2 > A1 Tests for equilibrated edge 
correction. Mean number of 
cells at distance r from type 2 
points is larger than that of 
type 1 points.            

6 g12(r)/g1,1+2(r) < 1 — P12/n2> P11/n1 Equivalent to variant 2. Type 
1 points are positively cor-
related with other type 1 
points. 
 

6a g21(r)/g2,1+2(r) < 1 — P21/n1>P22/n2 Equivalent to variant 2a. 
Type 2 points are positively 
correlated with other type 1 
points.           

7 g12(r)/g1,1+2(r) - 
g21(r)/g2,1+2(r) > 0 

— P21 + P22 > P12 + P11  Heterogeneity of the joined 
pattern interacts with the 
process that assigns the la-
bels.  
Type 2 points are mainly 
located in areas with high 
intensity of the joined pat-
tern.       
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4.2.10. Random labeling and grass tufts (RL_2.res) 

This example analyzes the spatial pattern of grass tufts in a semiarid grass-shrub 
steppe in Patagonia, Argentina. We analyze the pattern of Stipa speciosa (pattern 
1) in relation to the joined pattern of all other grass species present at the study 
plot (pattern 2, Poa ligularis, Stipa humilis, Stipa ibari, and Carex sp). The study 
plot comprises a 133 × 91 cell rectangle with 20cm × 20cm cells, covering ap-
proximately a 27m × 18m area of the shrub-grass steppe.  
 
We use the random labeling null model to investigate whether S. speciosa tufts 
are randomly distributed among all grass tufts. We use random labeling to inves-
tigate the spatial structure of tufts because we hypothesize that the processes and 
constrains that determine the locations of the grass tufts are the same for all spe-
cies and that the labels may depend on factors which are independent on those 
which determine the location of the tufts. 
 

1) highlight the data file "RL2.dat" in window Input data file. The 
locations of tufts of S. speciosa are pattern 1 (red 
dots), and the tufts of the other grass species (P. ligu-
laris, S. humilis, S. ibari, and Carex sp) are pattern 2 
(green dots): 
 

 
 
Figure RL1. Grass tufts in a Patagonian shrub-grass steppe. Red: 
tufts of S. speciosa, green: all other gras tufts. 
 

2) select "List" in How are your data organized 
3) select "Analyze all data in rectangle" in Give modus of analysis 
4) select "Data are given as list in grid" in Select modus of data 
5) select in box ring width a ring width dr = 3. For dr = 1 the 

O-ring statistic for random labeling has a somewhat jagged 
plot at smaller scales r. 
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6) click button "Calculate index". 
7) Enable the check box "Calculate confidence interval" on 

the upper left. A window with settings for null models ap-
pears. Select "Random labeling". 

8) Provide "99" for the number of replicate simulations of 
the random labeling null model 

9) click "Calculate index". Programita now performs the simu-
lations of the random labeling null model. After termina-
tion of the simulations a window appears: 

 

 
 
where can select the different pairwise differences be-
tween g- (or L-) functions which evaluate different bio-
logical effects. 

10) enable g12 which corresponds to univariate random labeling
and to the test for bivariate random labeling proposed by 
Goreaud and Pèlissier (2004): 

 

 
Figure RL2. Univariate (left) and bivariate random labeling 
(right). The confidence envelopes were constructed using 99 repli-
cate simulations of the null model. 

 
Univariate random labeling corrects for an underlying en-
vironmental heterogeneity by using a control pattern (in 
our example the locations of tufts of all other grass spe-
cies) which is more abundant than the pattern of cases 
(the locations of the tufts of S. speciosa). Under the as-
sumption that environmental heterogeneity conditioned the 
locations of pattern 1 and 2 in the same way, univariate 
random labeling investigates whether there is aggregation 
among tufts of S. speciosa.The environmental heterogeneity
in this system is given by shrubs, which cover in our plot 
some 11% of the area (figure at the right with red: grass 
tufts, black: dead and living shrubs). The analysis with 
univariate random labeling shows that the aggregation of
S. speciosa is not significantly different from the over-
all degree of aggregation of all grass tufts. 
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Figure RL3. Shrubs (black) and grass  
tufts (red) in the Patagonian shrub- 
grass steppe. 
 

11) Bivariate random labeling with variant 1 shows that esti-
mates of g12(r) are below the confidence envelopes for 
random labeling, therefore type 2 points are at scale r 
stronger correlated than expected by the average aggrega-
tion of the two component patterns. 

12) To show that random labeling compares the g11- and g12-
function to the univariate g1+2,1+2 of the joined pattern, 
we plot the g-functions (black dots), the confidence enve-
lopes (lines) and the univariate g1+2,1+2-function of the 
joined pattern (white dots) in the same graphic. We find 
that the confidence envelopes for g11- and g12 are both 
perfectly symmetric to g1+2,1+2 which confirms our interpre-
tation of this test: 

 
 
Figure RL4. Univariate random labeling (left) and bivariate random 
labeling with variant 1 (right) of the pattern shown in figure RL1. 
Comparison of the confidence envelopes (lines) and the the univariate 
g1+2,1+2 of the joined pattern (open circles). 

 
Note that the confidence envelopes of g11 are much wider 
than the confidence envelopes of g12. This is because the 
number of points varies greatly between patterns (n1 = 395 
and n2 = 1285). Each randomization of pattern 1 occupies 
only 24% of the total number of points, which leaves room 
for many different spatial configurations that include the 
actual configuration of pattern 1. On the other hand, the 
confidence interval of g12 is quite narrow since each ran-
domization of pattern 2 occupies 76% of the total number 
of points. This leaves little room for differing spatial 
configurations and the actual configuration of pattern 2 
is not probable. This results point to a weak point of 
variant 1: the number of points does greatly influence the 
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confidence envelopes. 
13) Figure RL4 right shows that the correlation of type 2 

points is significant for almost all scales studied. This 
suggests a first-order effect: the intensity of S. speci-
osa (pattern 1) tends to be higher in areas where the den-
sity of type 2 points (all other tufts) is lower. To il-
lustrate this result, we plot the (density-corrected) 
intensity of type 2 points (i.e., the moving window 
estimate with a moving window of R = 10) together with the 
points of pattern 1. This figure depicts, in a spatially-
explicit way, the bivariate K-function, i.e., the number 
of points of pattern 2 in circles with radius R = 10 (the 
intensity) in relation to the points of pattern 1 (the 
white dots). Points of pattern 1 are more frequently lo-
cated in areas with low intensity of pattern 2 (blue 
area):  

 
 
Figure RL5. Intensity of pattern  
2 (lowest intensity: blue, highest  
intensity red, with incrementing  
spectral colors) and points of pattern  
1 (white dots). 

 
14) Next we analyze the differences g12-g11 (variant 2) to in-

vestigate whether type 1 points are at distance r rela-
tively more frequent around type 1 points than type 2 
points around type 1 points. The difference g12-g11 shows 
significant negative correlation between pattern 1 and 2 
at spatial scales r = 5 to 16 (which is equivalent to a
significant positive correlation among type 1 points). 
Thus, points of pattern 1 tend to be more frequent in the 
neighborhood (r = 5 to 16) of pattern 1 than points of 
pattern 2. The inverse relation g21-g22 (variant 2a) shows 
at spatial scales r = 1 to 27 significant positive corre-
lation among type 2 points. Thus, points of pattern 2 tend 
to be more frequent in the neighborhood of type 2 points 
than in the neighborhood of points of pattern 1. This re-
sult indicates that the spatial distribution of type 1 and 
type 2 points shows a tendency to segregation: type 1 
points are correlated to other type 1 points, and type 2 
points are correlated to other type 2 points.  
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Figure RL6. Variant 2 of random labeling that investigates correla-
tion among type 1 points (left) and type 2 points (right).   

 
Analogously to figure RL5 we plot the difference in the 
number of type 2 and type 1 points in moving windows of 
radius R = 10 together with the locations of points of 
pattern 1. This plot is a spatially-explicit visualiza-
tion of K12-K11. It shows clearly that points of pattern 1 
are more frequently located in areas which have in their 
neighborhood more type 1 than type 2 points within a dis-
tance R = 10 (blue area).As a consequence, the difference 
g12-g11 depicts at scale R = 10 a correlation among type 
1 points. 
 

 
 
Figure RL7. Moving window estimate  
showing the difference in the number  
of type 2 and type 1 points in circles  
with radius R = 10 (lowest difference:  
blue, highest difference: red, with  
incrementing spectral colors). Pints  
of pattern 1 are shown as white dots. 

 
15) Testing the difference 

g22-g11 under random la-
beling (variant 4) re-
veals that both patterns 
show, taken separately, 
the same degree of ag-
gregation. This test 
does not depict the ex-
isting departure from 
random labeling.  
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16) Testing the difference 
g12-g21 under random la-
beling (variant 5) re-
veals that the bivariate 
g-functions are symmet-
ric and that rings 
around type 2 points 
have on average the same 
area within the study 
region than rings around 
type 1 points. 

 
17) To test variants 6 and 6a (which are equivalent to vari-

ants 2 and 2a) we repeat simulations of random labeling, 
but with the option "Irregularly shaped study" region in-
stead of "analyze all data in rectangle", thus excluding 
cells without points. To obtain variant 6 we select "g12", 
and to obtain variant 6a we select "g21".  

 
Figure RL8. Variant 6 of random labeling that investigates correla-
tion among type 1 points (left) and type 2 points (right). As ex-
pected, the results are identical to the results of variant 2 (figure 
RL6). 
 
18) To investigate departure from random labeling in relation 

to a possible first-order effect of the joined pattern 
(which was already indicated by variants 2, figures RL5
and RL7) we test variant 7. To obtain variant 7 we select 
"g12-g21" together with the option "Irregularly shaped 
study" region; thus excluding cells without points. The 
results of variant 7 reveal that the mean number of 
neighbors of type 2 points exceeds at distances r = 3 - 11
the mean number of neighbors of type 1 points. Thus, type 
2 points are mainly located in areas with high intensity 
of the joined pattern: 
 

 
 

19) Summarizing the results of random labeling for this data
set we find that  

• edge correction is equilibrated (variant 5), none of 
the patterns show a tendency to occur closer to the 
border of the study region),  

• the univariate structures of both patterns show the 
same degree of aggregation (variant 4),  
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• type 1 points are correlated and type 2 points are 
correlated (figures RL6 and RL8), and  

• points of pattern 2 occur mainly in areas of high in-
tensity of the joined pattern (variant 7). 

20) Interpretation of these results include:  
• tufts of type 1 and type 2 show similar biological 

characteristics, but a limited seed dispersal radius 
leads to violation of random labeling because the 
probability of occurrence of one type depends on the 
neighbors. A limited seed dispersal radius may pro-
motes positive correlation of type 1 and type 2 
tufts.  

• Univariate clumping of both patterns is not differ-
ent. This suggests that the seed dispersal mechanism 
is the same for both types of tufts. 

• Points of pattern 1 occur mainly in areas of lower 
overall tuft intensity. This result may indicate that 
higher densities of type 2 tufts (which are >3 times 
more frequent than tufts of pattern 1) in combination 
with a limited seed dispersal radius leave few safe 
sites for establishment of tufts of S. speciosa in 
the surrounding of type 2 tufts and promotes addi-
tional the tendency to spatial segregation. 
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4.2.11. Random labeling of adult and dead trees (RL_3.res) 

This example analyzes the spatial pattern of dead and adult trees of one species 
in a tropical rainforest. This example extends the analyses of examples NS_1, 
NS_2, NS_3, and NS_4. We use the random labeling null model to investigate 
whether dead trees are randomly distributed among the joined pattern of dead 
and adult trees. This example is a classical example for application of the ran-
dom labeling null model.  
 

1) highlight the data file "RL3_1m" in window Input data file. This 
data file gives the locations of adult trees and dead 
trees of one species in cells of 1m2 within a 500m × 500m 
study region: 
 

 
 
Figure RL3. Adult trees and dead trees in 
cells of 1m2. Adult trees (red), dead trees  
(green), and cells with dead and adult tree  
(black).  
 

2) select "List" in How are your data organized 
3) select "Data are given as list in grid" in Select modus of 

data.  
4) select "Data are given as list in grid" in Select modus of data 
5) select in box ring width a ring width dr = 3. For dr = 1 the 

O-ring statistic for random labeling has a somewhat jagged 
plot at smaller scales r. 

6) click the button "change" in set maximal radius rmax and set the 
maximal scale r of the analysis to rmax = 50.  

7) click button "Calculate index", Programita shows you the 
pattern and calculates the O-ring function of the data. 
The visualization of the data (figure RL3) shows that the 
adults are clearly clustered. 

8) select "Analyze all data in rectangle" in Give modus of analysis 
9) Enable the check box "Calculate confidence interval" on 
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the upper left. A window with settings for null models ap-
pears. Select "Random labeling". 

10) Provide "19" for the number of replicate simulations of 
the random labeling null model 

11) click "Calculate index". Programita now performs the simu-
lations of the random labeling null model. After termina-
tion of the simulations a window appears: 

 

 
 
You can select the different pairwise differences between 
g- (or L-) functions which evaluate different biological 
effects. 

12) enable g12 (variant 1) which corresponds to the test for 
bivariate random labeling proposed by Goreaud and Pèlis-
sier (2004): 

 

 
 
The bivariate g12 is for scales r = 1 - 14 below the con-
fidence interval of random labeling which indicates that 
the locations of dead trees are significantly correlated, 
conditional on the joined locations of adult and dead 
trees. Especially, there is a minimal distance between 
adult trees and dead trees of some 4 m which could be the 
caused by non-overlapping canopies of adult trees. The in-
verse relation g21 is perfectly symmetric: 
 

 
 
which indicates that adult trees are as well correlated at 
scales r = 1 - 14. Consequently, the edge correction is 
perfectly symmetric as indicated by the difference g12-g21 
(variant 5): 
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Note the difference in the scaling of the y-axis. The 
maximal value for e.g., g21 is 12.5 whereas the maximal 
value for the difference is about 0.2.  

13) Analyzing the difference g22-g11 (variant 4) indicates 
that the degree of aggregation of both patterns is not 
significantly different: 
 

 
 
This result strengthens the previous results of examples 
NS_2 and NS_3 that indicated that the overall clustering 
of adults and recruits at a scale of some 30m is a result 
of environmental heterogeneity that affects all life-
stages of the species in the same way. 

14) To test variants 6 and 6a (which are equivalent to vari-
ants 2 and 2a) we repeat simulations of random labeling, 
but with the option "Irregularly shaped study" region in-
stead of "analyze all data in rectangle", thus excluding 
cells without points. To obtain variant 6 we select "g12", 
and to obtain variant 6a we select "g21": 

 

 
We find that adult trees are positively correlated at 
scales r = 1 - 3. This correlation is caused by the non-
overlapping canopies. Additionally, they show at all 
scales a non-significant tendency to correlation and at 
scales around r = 30, adult trees are weakly positively 
correlated. This is the correlation to the next cluster. 
The inverse relation g21 indicates that dead trees show 
the same correlation at small scales than adult trees 
which is caused by non-overlapping canopies, but they show 
a weak positive correlation up to scales r = 12. Note that 
variant 1 and variant 6 have a different interpretation 
and different confidence intervals. 
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15) To investigate departure from random labeling in relation 
to a possible first-order effect of the joined pattern we 
test variant 7. To obtain variant 7 we select "g12-g21" 
together with the option "Irregularly shaped study" re-
gion; thus excluding cells without points. The results of 
variant 7 show that the correlation among dead trees and 
the correlation among adult trees is symmetric and thus do 
not provide indications of a significant first-order ef-
fect: 
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4.3. Antecedent condition 

If the two types of points were not created at the same time, but in sequence, 
pattern 2 did not influence the development of pattern 1, but pattern 1 may influ-
ence the development of pattern 2. An appropriate null model for this biological 
situation needs to consider the antecedent condition. For example, for investigat-
ing the relationship between adult trees (pattern 1) and seedlings (pattern 2) an 
appropriate null model to test for competition (repulsion) or attraction (facilita-
tion) would be to randomize the locations of the seedlings (because they could 
potentially be found at the entire study region) and to keep the locations of the 
trees fixed. Randomizing the locations of the trees would be inappropriate be-
cause they did not change their position during the development of the seedlings. 
Moreover, possible repulsion or attraction between seedlings and trees might be 
obscured by randomizing the locations of the trees. Another example where one 
may keep the locations of pattern 1 fixed and specify only a null model for pat-
tern 2 is the relation between shrubs (fixed) and grass tufts. In this case the null 
model distributes grass tufts at random over the area not occupied by shrubs. 
Departure from the null model (e.g., there are more tufts in the neighbourhood of 
shrubs than expected under this null model) may indicate facilitation. 
 
Because a null model with an antecedent condition specifies only the null model 
of the second pattern, all univariate null models (e.g., heterogeneous Poisson, 
hard core, Neyman-Scott cluster null model) may be used. 
 
 

4.3.1. Trees and recruits (A_1.res and derivates) 

The data for this example are adult trees and recruits of one species in a 500m × 
500m plot of tropical forest. The spatial distribution of this tree species appears 
clumped, which may be caused by environmental heterogeneity. To investigate 
the relation between recruits and adult trees we proceed in several steps by con-
trasting the data to different null models. In the first step we use a null model 
that fixes the location of the adult trees (i.e., an antecedent condition) and ran-
domize the location of the trees (thus ignoring a possible environmental hetero-
geneity). The assumption of this null model is that recruits could potentially be 
found all over the study region. In a second step we consider the environmental 
heterogeneity and use a Poisson null model for the distribution of the recruits.  
 

1) highlight the data file "A_1.dat" in window Input data file. This 
data set gives the location of adult trees and recruits at 
a meter scale, but has a resolution of 1 centimeter. 



USER MANUAL FOR PROGRAMITA 

 

116 

2) select "List" in How are your data organized 
3) select "List with coordinates, no grid" in Select modus of 

data. A window opens asking you to provide a cell size. In-
sert "5.00".  

4) click the button "change" in set maximal radius rmax and set the 
maximal scale r of the analysis to rmax = 50. 

5) click button "Calculate index", Programita shows you the 
pattern and calculates the O-ring function of the data:  

 

 
 

6) enable the check box "Calculate confidence interval" on 
the upper left. A window with settings for null models ap-
pears. Select "Pattern 1 fix, pattern 2 random". 

7) provide "99" for the number of replicate simulations of 
the random labeling null model 

8) click "Calculate index". Programita now performs the simu-
lations of the random labeling null model. The results 
show that there are significantly more recruits in the r = 
1 - 7 (1 - 35m) neighborhood than expected by a random 
distribution of recruits (i.e., recruits are attracted by 
adults). Interestingly, there is also a departure from the 
null model at scales r = 34 - 40 (170m - 200m) with more 
recruits than expected. This attraction is due to the 
patchy distribution of adults and describes the attraction 
to the next cluster of adults.  

 

 
 

13) To investigate the hypothesis that the attraction may be 
partly a result from environmental heterogeneity that re-
stricts the tree species to occur in clusters, we repeat 
the analysis of example A_1.res but use a heterogeneous 
Poisson null model for the recruits.  

14) Select in the null model window "Pattern 1 fix, pattern 2 
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random" and "heterogeneous Poisson". A window with set-
tings for the moving window estimate of the heterogeneous 
Poisson appears: 
 

 
 
Select "Test only for pattern 1" (i.e., the intensity of 
pattern 1 will be used to distribute points of pattern 2), 
and select a radius R = 8 for the moving window. This ra-
dius is the radius with attraction.  

15) click button "Calculate index". Programita now calculates 
the moving window estimate of the first-order intensity of 
the adults (right graph): 

 

    

 
16) Click "ok" at the message window. Programita now performs 

the simulations of the heterogeneous Poisson null model 
and shows the patterns of the simulated null models. After 
termination of the simulations a graph appears showing the 
O-ring function of your data and the confidence envelopes 
of the heterogeneous Poisson null model: 

 

 
 

The results show that the heterogeneous Poisson null model 
with a moving window radius R = 8 yields a too strong ag-
gregation at scales r = 3 -9 (15m - 45m) and does thus not 
describe the data well. 

17) In a next step we repeated the analysis with a radius of 
the moving window of R = 15, which is the scale at which 
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the bivariate O-ring statistic dropped to the expected 
value (i.e., the overall density of recruits). This null 
model describes attraction at small scales well, but leads 
to repulsion at intermediate scales: 
 

 
 
We are thus not satisfied with these null models and 
search for a better one. An alternative to describe the 
common clustering of trees and recruits due to an hetero-
geneous environment is a bivariate Neyman Scott null model 
where parent events (which represent the clusters of the 
environmental heterogeneity) are randomly distributed and 
pattern 1 and pattern 2 are the offspring from these par-
ents. The analysis of this null model is given in example 
NS_4.res. 

 
 
 

4.3.2. Shrubs and grass tufts (A_2.res) 

In this example we extend the analysis of the grass-shrub steppe already started 
in example R_2.res and investigate the relation between grass tufts and shrubs. 
Because there is a hypothesized facilitation effect exerted by shrubs on grass 
tufts we use a null model with antecedent condition.  
 
In this example we need to perform the analysis in the matrix mode for several 
reasons. First, the size of shrubs considerably exceeds the size of the grass tufts 
and an approximating of shrubs with points (as usual in point-pattern analysis) 
we would loose all information on the immediate neighbourhood relations be-
tween shrubs and grass tufts. Second, grass tufts do in general not grow inside 
shrubs and therefore we can only accept one category per cell (i.e., a cell is either 
empty, or covered by a shrub or by a grass tuft). Analysis in the matrix model 
under antecedent condition allows us to distribute the grass tufts (which each 
occupy exactly the area of one cell) randomly over the area of the study area not 
occupied by shrubs.  
 

1) highlight the data file "A_2.dat" in window Input data file. This 
data is a categorical map that contains cells occupied by 
shrubs of all species (category 9) and cells occupied by 
grass tufts of all species (categories 1, 2, and 3).  

2) select "Matrix" in How are your data organized and select "Matrix 
map" in Select modus of data. Provide the code numbers for the 
two patterns in the window code numbers for patterns: 9 for pat-
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tern 1 and 1, 2, and 3 for pattern 2: 
 

 
 

3) click the button "change" in set maximal radius rmax and set the 
maximal scale r of the analysis to rmax = 20. We are only 
interested in smaller scales where facilitation may occur. 
Click button "Calculate index", Programita shows you the 
pattern and calculates the O-ring function of the data. 
Shrubs are red and grass tufts are green: 

 

 
 

9) enable the check box "Calculate confidence interval" on 
the upper left. A window with settings for null models ap-
pears. Select "Pattern 1 fix, pattern 2 random". 

10) provide "99" for the number of replicate simulations of 
the random labeling null model and click "Calculate in-
dex". Programita now performs the simulations of the null 
model where grass tufts are randomly distributed over the 
cells not occupied by shrubs and only one grass tuft is 
allowed per cell. 

 

 
 

11) The results of the analysis show that the confidence in-
tervals are perfectly symmetric to the bivariate g-
function of the data. Thus, grass tufts are not closer to 
shrubs than expected by the antecedent condition CSR null 
model and we have therefore to reject the hypothesis of
facilitation in the overall relation between shrubs of all 
species and grass tufts of all species. 
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4.4. Random labeling under antecedent condition 

Random labeling is in some respect a hermaphrodite null model with characteris-
tics of both, a bivariate null model and a univariate null model. This is because 
the relation between pattern 1 and pattern 2 is assessed conditionally on the loca-
tion of all points. The process that distributes the labels (e.g., whether or not a 
tree is dead or burned or infected) determines only the location of one type of 
points within all points (e.g., the occurrence of the event dead, burned or in-
fected). The locations of the second type of points follow automatically from the 
locations of type 1 points (i.e., all points which are not type 1).  
 
Because random labeling shares characteristics of univariate null models we can 
extend the idea of random labeling to a situation which combines features of an 
antecedent condition with bivariate random labeling. Such a null model is appro-
priate for situations where the process that assigns labels may depend on a third 
pattern. Biological examples of such situations are burned and non-burned (non- 
serotinuos) shrubs in relation to a second (serotinuos) shrub species. In this case 
the question is whether burned shrubs are closer to the (serotinuos) shrub species 
than non-burned shrubs. This would correspond to a "kill my neighbour" strategy 
of the serotinuos shrub species. Another example is to extend the analyses of the 
shrub-grass steppe (examples RL_2.res and A_2.res) and investigate whether or 
not the grass tufts S. speciosa (pattern 1) are closer to shrubs than the tufts of all 
other grass species (pattern 2).  
 
Because classical point pattern analysis with Ripley's K-function and the Wie-
gand-Moloney O-ring statistic allows only analysis of 2 patterns, but not three 
patterns as necessary for random labeling under antecedent condition, we use a 
dirty trick that takes advantage of the feature of Programita to calculate second-
order statistics in any irregularly shaped study region supported by the underly-
ing grid. We use the modus list with coordinates in a grid and code cells occu-
pied by shrubs as patter 1, cells occupied by S. speciosa as pattern 2 and cells 
occupied by all other grass tufts are coded as empty cells. If we now apply the 
option "irregularly shaped study region" and the null model "random labeling 
special" Programita distributes the points of pattern 2 randomly over the loca-
tions of the study region not occupied by pattern 1. The bivariate O-ring statistic 
therefore investigates whether or not S. speciosa tufts are more frequently in the 
neighborhood of cells occupied by shrubs than tufts of all other grass tufts.  
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Map used in the example 
RL_A_1.res. Red: shrubs, 
green: grass tufts of the 
species  S. speciosa, 
white: grass tufts of all 
other species, and black: 
bare ground. 
 

 

4.4.1. Shrubs and grass tufts (RL_A_1.res) 

 
1) highlight the data file "RL_A1.dat" in window Input data file. 

This data set contains the location of shrubs (pattern 1), 
grass tufts of S. speciosa (pattern 2), and grass tufts of 
all other species (empty cells). 

2) select "List" in How are your data organized 
3) select "Analyze all data in rectangle" in Give modus of analysis 
4) select "Data are given as list in grid" in Select modus of data 
5) select "irregularly shaped study region". 
6) click button "Calculate index". 
7) Enable the check box "Calculate confidence interval" on 

the upper left. A window with settings for null models ap-
pears. Select "Random labeling special". 

8) Provide "99" for the number of replicate simulations of 
the random labeling null model 

9) click "Calculate index". Programita now performs the simu-
lations of the random labeling null model. The results 

 

 
 

show that grass tufts of the species S. speciosa are not 
more frequently in the neighborhood of cells occupied by 
shrubs than tufts of all other grass tufts. Therefore we 
reject the hypothesis that S. speciosa differs in its re-
lation to shrubs from grass tufts of all other species. 

 
 



USER MANUAL FOR PROGRAMITA 

 

122 

 
 

4.5. Bivariate cluster processes 

4.5.1. Background 

There are several possibilities to construct bivariate cluster processes. We show 
here and in the next section only two simple cases which are straight forward 
generalizations of the univariate Poisson cluster process.  
 
The bivariate cluster process is the analogue to the univariate cluster process, but 
two types of points are generated (instead of one type) using a common set of 
parents.  
 
Parent events form a CSR process. Parents may produce a random number of 
offspring of two different types (however, not each parent needs to produce off-
spring of both types) and offspring of both types are spatially distributed around 
their parent according to two bivariate probability density functions. The final 
bivariate pattern consists of the offspring of the two types only. Thus, both types 
of points are clustered around shared parents. This null model e.g., describes an 
environmental heterogeneity that affects both patterns in the same way.  
 
If the number of offspring follows for both types of points a Poisson distribution 
and the location of the both offspring types, relative to the parent individual, 
have each a bivariate, Gaussian distribution, the offspring of each type follow a 
univariate Neyman-Scott process (e.g., Diggle 1983) and the bivariate pattern 
follows a bivariate Neyman-Scott processes. The K-function and the pair-
correlation function g(r) for this bivariate Neyman-Scott process are given by: 
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where ρ is the intensity of the parent process, and σ12

2 is the resulting "bivariate 
variance" of the distance between type 1 and type 2 points. Note that the theo-
retical expectation of σ12

2 is the average of the two univariate Gaussian distribu-
tion σ1

2 and σ2
2 that determine the locations of the type 1 and type 2 offspring 

relative to the parent. The unknown parameter ρ12 must be fit by comparing the 
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empirical )(ˆ rK  with the theoretical K-functions K(r, σ, ρ) (see Diggle 1983).  
 
Comparison of the resulting parameters σ12

2 and ρ12 of bivariate cluster process 
with the parameters of the two univariate component processes (σ1

2, ρ1, σ2
2, and 

ρ2) reveal which proportion of the parents are shared parents and whether there 
are some inconsistencies which may indicate that this null model does not well 
describe the data.  
 
If all parents are shared we obtain ρ12 = ρ1 = ρ2. If only a certain proportion of 
the parents are shared (i.e., some of them are only cluster centres of type 1 or 
type 2 points) we may expect that min(ρ1, ρ2) < ρ12 < ρ1 + ρ2. In this case the 
total number of shared parents is A(ρ1 + ρ2 - ρ12), the proportion of shared par-
ents among all parents is (ρ1 + ρ2 - ρ12)/ρ12, and the proportion of parents of pat-
tern i is ρi/ρ12. A is the total number of cells in the study region.  
 
However, if we find ρ12 >> ρ1 + ρ2 we have an argument that the data are not 
well described by a bivariate Neyman-Scott process. In this case the fitted pa-
rameter ρ12 indicates that there are more shared parents than parents of the two 
individual component patterns. Similarly, this null model is only likely if σ12

2 ≈ 
(σ1

2 + σ2
2)/2. However, when evaluating the plausibility of the null model, we 

need to consider the uncertainty in the fit and construct confidence intervals of 
σ12 and ρ12. 
 

4.5.2. Implementation of bivariate Neyman-Scott process 

The procedures for fitting a bivariate Neyman-Scott process to a bivariate pattern 
are analogous to the univariate case. The only difference is that it requires previ-
ous analysis of the univariate patterns.  
 
The implementation of the cluster null model based on the bivariate Neyman-
Scott process equation C4 is analogously to the implementation of the univariate 
process, however, we consider the possibility that not all parents are shared. At 
the beginning of each simulation of the null model, Programita determines the 
random locations for the parents (= trunk[Aρ12], A = number of cells in study 
region, and the function trunk[x] truncates x to the nearest integer), and the 
number of parents of pattern 1 (= trunk[Aρ1) and of pattern 2 ( = trunk[Aρ2]). It 
uses only the first trunk[Aρ1] parents for simulation of type 1 points, and the last 
trunk[Aρ2] parents for simulation of type 2 points. In this way Programita uses 
three types of parents: parents only for type 1 points, parents for type 1 and type 
2 points, and parents only for type 2 points.  
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4.5.3. Adult trees and recruits (NS_4.res) 

 
1) This example analyzes the spatial pattern of recruits and 

adult trees and continues the analysis of example A_1.res. 
The univariate analyses showed that the pattern of the re-
cruits is the superposition of clusters at a small and a 
larger scale (example NS_2.res) whereas the adults are 
clustered at only one scale (example NS_3.res). The larger 
scale of recruit clustering coincides with the scale of 
adult clustering which suggests that the clustering de-
scribes basically the environmental heterogeneity. 

2) Highlight the data file "A_1.dat" in window Input data file. This 
data set gives the location of adult trees and recruits at 
a meter scale, but has a resolution of 1 centimeter. 

3) select "List" in How are your data organized 
4) select "List with coordinates, no grid" in Select modus of 

data. A window opens asking you to provide a cell size. In-
sert "1.00".  

5) click the button "change" in set maximal radius rmax and to set 
the maximal scale r of the analysis to rmax = 100, and se-
lect a ring width of dr = 3. 

6) click button "Calculate index", Programita shows you the 
pattern and calculates the O-ring function of the data:  

 

 
 

7) To determine Monte Carlo confidence intervals for the 
bivariate Neyman-Scott null model enable the check box 
"Calculate confidence interval" on the upper left. A win-
dow with settings for null models appears, select "cluster 
process". A window with a selection of cluster process 
null models appears, enable "bivariate Neyman-Scott" and 
press ok. 

8) Programita calculates the g- and the L-function for r = 1 
to rmax: 
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At this point we are confronted with a problem that may 
frequently appear if the data we want to fit do probably 
not follow the bivariate Neyman Scott process perfectly. 
Remember that the recruits show a double-clustered pattern 
(see example NS_2): we fit two different solutions for the 
fit.  
 

• If we adjust equation C4 for scales r = 1 - 55 the 
best fit yields σbest = 14.24 and ρbest = 0.000185 which 
corresponds to some 46 parents (graphic above).  

• If we adjust equation C4 for scales r = 15 - 100 the 
best fit yields σbest = 19.77 and ρbest = 0.000154:
which corresponds to some 38 parents (graphic below). 

 

 
 
We can also switch between the two solutions if we select 
r = 6 - 100 and optimize only the g-function (first solu-
tion): 

  
or optimize only the L-function (second solution). How-
ever, both solutions look reasonable. To assess which of 
the two solutions is more probable we first check the 
plausibility (or biological interpretation) of the two so-
lutions and next simulate the two corresponding processes 
to find confidence envelopes.   

9) For the biological interpretation of the two solutions we 
compare them to the results of the univariate analyses
(NS_2.res and NS_3.res). The two solutions of the bivari-
ate analysis were:  
 

• σbest = 14.28 and ρbest = 0.000185 (46 parents) 
• σbest = 19.77 and ρbest = 0.000154 (38 parents) 

 
and the results of the univariate analyses were: 
 

• σ1best = 14.08, 100ρ1best = 0.0083 (20 parents)  
• σ2best = 14.40, 100ρ2best = 0.0095 (23 parents) 
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Thus, the first solution yields an excellent accordance 
with the expected theoretical variance σt2 = (σ1best2 + 
σ2best2)/2, and the number of parents of the component proc-
esses (20 + 23 =43) is approximately the number of parents 
of the bivariate case (46). The interpretation of this is 
that the cluster centers of the two patterns are basically 
disjunct.  
 
The second solution yields a poorer accordance with the 
expected theoretical variance σt2, but there are shared 
cluster centers: 39% of all parents are only parents of 
pattern 1, 13% of all parents are parents for patterns 1 
and 2, and 47% of all parents are only parents for pattern 
2. 

10) For construction of confidence envelopes for the first so-
lution click "Calculate index". Programita now performs 
the simulations of the bivariate Neyman-Scott null model 
(NS_4_solution1.res): 
 

 
 
This process describes the data well at spatial scales r > 
10, but does not well describe the peak at scales r = 5- 
7.  

11) For construction of confidence envelopes for the second 
solution click "Calculate index". Programita now performs 
the simulations of the bivariate Neyman-Scott null model 
(NS_4_solution2.res). 

12) The simulation of 99 replicates of the Neyman-Scot null 
model shows that the data are well within the confidence 
envelopes of the null model (right figure), except for the 
scales r = 5 - 7: 

 

 
 
The confidence envelopes are much wider at smaller scales 
than those of the first solution.  
 
In summary, our results indicate that the locations of the 
recruits may for larger scales (i.e., r > 10) not directly 
be correlated with the locations of adult trees, but indi-
rectly via an environmental heterogeneity that constrains 
both patterns in the same way (note that the univariate 
estimates for σbest were the same for recruits and adult 
and also used for the bivariate Neyman Scott null model). 
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However, to exclude the alternative hypothesis that the 
locations of the recruits are directly linked to the loca-
tions of adult trees, we need to confront the data to the 
null model that corresponds to this hypothesis (i.e., the 
linked process using a bivariate Neyman-Scott cluster 
process with antecedent condition, example A_C_4.res)  
 
Analogous simulations of the null model, but using the es-
timated value of σ122 (i.e., σ1 = σ2 = σ12) instead of σt2
(NS_4_sigma12.res) yields narrower confidence envelopes 
for the bivariate analysis but does not change the results 
at larger scales (i.e., r >15):  
 

 
The bivariate O-ring function shows a significant peak at 
scales r = 5 - 7 (some 6m). In order to properly interpret 
this peak, we show the univariate and bivariate g-function
with a resolution of 25cm and a ring width of 5 cells, 
thus "zooming" into the clusters of adult trees: 
 

 
The left figure (univariate g-function of adult trees) 
shows that adult trees have a minimal distance of some 6 
cells = 1.5m. There is a sharp peak at a scale of some 10 
cells (= 4 m) which indicates aggregation of adults at 4m 
and the rest of the g-function shows clear indications for 
"virtual aggregation" which of course is the large scale 
clustering already discovered in example NS_3.res.  
 
This results indicate that some adult trees occur within 
the larger clusters in randomly distributed clumps of some 
2 or 3 trees with stems 4m away. If recruits and adults 
share a cluster, then recruits appear more frequently some 
6m away from the adults (right figure above). This attrac-
tion could be an effect of avoidance of direct competition 
to adult trees in combination with a limited seed disper-
sal radius from direct seed rain.  
 

13) We saved the settings and results of the fit of the 
bivariate Neyman-Scott null model to the data (NS_4.fit) 
and use them now to estimate confidence intervals for the 
estimates of the parameters σbest and ρbest (see section 
"Constructing confidence intervals for σ and ρ"): 
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The confidence intervals for an error < 0.012 are shown as 
bold intervals at the axes. We find σ ∈ (16.7, 23.3) and 
100*ρ ∈ (0.014, 0.017). The theoretical value of sigma, 
σt2 = (σ1best2+σ2best2)/2 = 14.24 is indicated by a dashed ver-
tical line and the parameters used for simulations of the 
null model are shown as a black dot. σt2 is outside the 
confidence interval for an error < 0.012, but inside the 
confidence intervals for error < 0.02, which is still 
small. 
 

 
 

4.5.4. Dead trees and recruits (NS_5.res) 

 
1) This example analyzes the spatial pattern of recruits and 

dead trees and complements the analysis of example 
NS_4.res. The univariate analyses showed that the pattern 
of the recruits is the superposition of clusters at a 
small and a larger scale (example NS_2.res) whereas the 
dead trees are clustered at only one scale (example 
NS_3b.res). 

2) Highlight the data file "Dead_recruits.dat" in window Input 
data file. This data set gives the location of dead trees and 
recruits at a meter scale, but has a resolution of 1 cen-
timeter. 

3) select "List" in How are your data organized 
4) select "List with coordinates, no grid" in Select modus of 

data. A window opens asking you to provide a cell size. In-
sert "1.00".  

5) click the button "change" in set maximal radius rmax and set the 
maximal scale r of the analysis to rmax = 50. 

6) click button "Calculate index", Programita shows you the 
pattern and calculates the O-ring function of the data:  
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7) To determine Monte Carlo confidence intervals for the 
bivariate Neyman-Scott null model enable the check box 
"Calculate confidence interval" on the upper left. A win-
dow with settings for null models appears, select "cluster 
process". A window with a selection of cluster process 
null models appears, enable "bivariate Neyman-Scott" and 
press ok. 

8) Programita calculates the g- and the L-function for r = 1 
to rmax and the window Fit of Neyman-Scott models to data appears. You 
can specify the tuning constants rmin, rmax, and c for the 
fit in the window "Fit cluster process". 

9) Select rmax = 1 and r0 = 65. The default power transforma-
tions c = 0.5 for the g-function and c = 1 for the L-
function are reasonable starting values. To optimize the 
g- and the L-function simultaneously enable "both, L- and 
g-function".  

10) Click the button "fit" and Programita searches the parame-
ters of the bivariate Neyman-Scott model that simultane-
ously fits the g- and L- function of your data best (red 
line: fit, black line: data). 

11) To optimize the parameter fit, press the button "Zoom". 
Programita now determines the probable range of the pa-
rameters. Next, press "fit" and Programita searches the 
best fit. We find σbest = 10.8 and ρbest = 0.000198: 
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This corresponds to a cluster size of some 22m, and some 
49 parents events. The estimated 49 parents coincide with 
the estimated 49 parents found in the univariate analyses 
of the dead trees (example NS_3b.res)and is larger than 
the 24 parents of the recruits (NS_2.res). This indicates 
that all cluster centers of the recruits are also cluster 
centers for dead trees. Note that in the previous analysis 
of adult trees and recruits some cluster centers were ex-
clusively for adults or recruits. 

12) To save the settings and results of the fit click button 
"Save results" and provide "NS_5". 

13) Provide the values of σ1best, σ2best, ρ1best, and ρ2best from the 
analysis of the univariate patterns. Programita uses the 
values of ρbest, ρ1best, and ρ2best to determine which parent 
serves as cluster centre for pattern 1, pattern 2, or both 
patterns at the same time. Note that Programita does not 
use the fitted estimate of σ122 for simulation of the null 
model, but your input σt2 = (σ1best2+σ2best2)/2 which uses the 
estimates from the univariate analysis. Therefore it is 
important that you perform previous univariate analyses. 
The values from the bivariate analyses were:  
 

• σbest = 10.8 and 100ρbest = 0.0198 (some 49 parents) 
 
The values from the univariate analyses were:  
 

• σ1best = 6.916, 100ρ1best = 0.0197 (49 parents) 
• σ2best = 14.40, 100ρ2best = 0.0095 (23 parents) 

 
Thus, half of the cluster centers are cluster centers of 
the recruits, and all are centers of the dead trees. 

14) Next click "ok", select a ring width of dr = 3, and click 
"Calculate index". Programita now performs the simulations 
of the bivariate Neyman-Scott null model. The simulation 
of 19 replicates of the Neyman-Scot null model shows that 
the data are well within the confidence envelopes of the 
null model (right figure): 
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These results indicate that the locations of the recruits 
may indirectly be correlated with the locations of dead 
trees. One hypothesis to explain this result is that the
correlation is induced, similarly to the case of adult 
trees and recruits (example NS_4) via an environmental 
heterogeneity that constrains both patterns in the same 
way. However, this result leaves still room for the alter-
native hypothesis that the locations of the recruits are 
directly linked with the locations of the dead trees 
(i.e., a competition release effect combined with an envi-
ronmental heterogeneity). To reject or accept the alterna-
tive hypothesis we need to confront the data to the null 
model that corresponds to this hypothesis (i.e., the 
linked process using a bivariate Neyman-Scott cluster 
process with antecedent condition, example A_C_3.res) 
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4.6. Bivariate cluster processes under antecedent condition 

4.6.1. Background 

The bivariate cluster process under antecedent condition assumes that points of 
pattern 1 are parents of type 2 points and that pattern 1 is a random pattern. Thus, 
the process that creates pattern 2 is linked to pattern 1, e.g., a clustered distribu-
tion of seedlings around randomly distributed adult trees. The locations pattern 1 
have to be preserved (i.e., an antecedent condition), and the type 2 points are 
randomized following a Neyman-Scott process null model where their parents 
are selected randomly among the type 1 points. Thus, only a certain proportion 
of type 1 points need to serve as centre for a cluster of type 2 points. The as-
sumption for calculating the theoretical expectation for the g and L-function of 
this null model is that the points of pattern 1 are randomly distributed. The inten-
sity of type 1 points which are cluster centers of pattern 2 is ρ2. The K-function 
and the pair-correlation function g(r) for this bivariate Neyman-Scott process are 
given by: 
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with parameters σ12

2 and ρ12. The parameter σ12
2 is the variance of the Gaussian 

distribution that determines the locations of type 2 points relative to their (type 
1) parents, and the parameter ρ12 is the intensity of pattern 1 (i.e., ρ12 = λ1). Note 
that equation C5 does not allow to determine the intensity ρ2 of parents of type 2 
points. This must be done by previous univariate analysis of pattern 2 (see 
equation C6). 
 
If the cluster size is large (i.e., σ12 is large), equation C5 approximates K(r) = π 
r2 and g(r) = 1 which corresponds to independence of the offspring from their 
parents.  
 
The univariate g- and K-functions of pattern 2 are given through equation C1: 
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The parameter σ2 determines the locations of type 2 points relative to their (type 
1) parents and should coincide with the parameter σ12 of equation C5. The pa-
rameter ρ2 is the intensity of type 1 points which are parents of type 2 points and 
should be smaller or equal than the intensity λ1 of type 1 points. The proportion 
of points of pattern 1 which serve as parents for points of pattern 2 can be calcu-
lated by comparing the estimates of ρ2 from the univariate analysis of pattern 2 
with the intensity λ1 of pattern 1.  
 
 
 

4.6.2. Implementation of the antecedent condition cluster process 

The procedures for fitting the bivariate Neyman-Scott process under antecedent 
condition to a bivariate pattern are analogous to the univariate case. The only 
difference is that it requires previous analysis of the univariate patterns for 
checking the assumption that pattern 1 is a random pattern and for determining 
the proportion of points of pattern 1 which serve as parents.  
 
 
 

4.6.3. Antecedent cluster process (C_A_1.res) 

The data for this example was created with an antecedent cluster process. A total 
of 25 type 1 points were randomly distributed over a 200 × 200 cell grid and all 
of them served as cluster centre for 100 points of pattern 2. The (bivariate) pa-
rameters of pattern 2 were: 

• σ12 = 8, and  
• ρ12 = 0.000625.  

 
In a first step we analyzed the two univariate component patterns and in a second 
step the bivariate pattern. 
 

1) Select the data file "C_A1.dat" in window Input data file. This 
artificial example was created with an antecedent cluster 
process with parameters σ12 = 8 and ρ12 = 0.000625.  

2) select "List" in How are your data organized and "Data are given 
as a list in grid" in Select modus of data. 

3) click the button "change" in set maximal radius rmax and set the 
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maximal scale r of the analysis to rmax = 50. 
4) click button "Calculate index", Programita shows you the 

pattern and calculates the O-ring function of the data:  
 

 
 

5) The univariate analysis of pattern 1 (C_A_1uniPat1.res) 
shows that this pattern is indeed an random pattern: 
 

 
 

6) For the univariate analysis of pattern 2 select the data 
file "C_A1_21.dat" in window Input data file. This is the data 
from "C_A1.dat" but pattern 1 and 2 are exchanged. Fitting 
a univariate Neyman-Scott cluster yields  

• σ2 = 7.54 and ρ2 = 0.00077 (31 parents)  
which are in good agreement with the parameters under 
which the pattern was created: 

• σ12 = 8 and ρ12 = 0.000625 (25 parents). 
7) For the bivariate analysis highlight the data file 

"C_A1.dat" in window Input data file for the bivariate analysis. 
8) select "List" in How are your data organized and "Data are given 

as a list in grid" in Select modus of data. 
9) click the button "change" in set maximal radius rmax and set the 

maximal scale r of the analysis to rmax = 50. 
10) click button "Calculate index", Programita shows you the 

pattern and calculates the O-ring function of the data. 
11) To determine Monte Carlo confidence intervals for a 

bivariate Neyman-Scott null model enable the check box 
"Calculate confidence interval" on the upper left. A win-
dow with settings for null models appears, select "cluster 
process". A window with a selection of cluster process 
null models appears, enable "Bivariate linked double-
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cluster". 
12) The window Fit of Neyman-Scott models to data appears and asks you to 

provide the results of the univariate analysis of pattern 
1 and 2. The results of the univariate analysis are needed 
for performing the fit and for simulation the null model. 
Since your pattern is a random pattern, insert a high 
value for σ1 and a value for ρ1 that is below the inten-
sity of pattern 1, and provide the results from univariate 
analysis of pattern 2: 

• σ1 = 1111 and 100ρ1 = 0.1 (40 parents) 
• σ2 = 7.54 and 100ρ2 = 0.077 (31 parents) 

13) Click “ok” in the window for inserting the results of the 
univariate analyses and again “ok” in the window for null 
models. 

14) Programita calculates the g- and the L-function for r = 1 
to rmax and the window Fit of Neyman-Scott models to data appears. You 
can specify the tuning constants rmin, rmax, and c for the 
fit in the window "Fit cluster process": 

15) Select rmax = 1 and r0 = 50. We are only interested in the 
structure of the pattern at smaller scales. The default 
power transformations c = 0.5 for the g-function and c = 1 
for the L-function are reasonable starting values. To op-
timize the g- and the L-function simultaneously enable 
"both, L- and g-function".  

16) Click the button "fit" and Programita searches the parame-
ters of the bivariate Neyman-Scott model that simultane-
ously fits the g- and L- function of your data best (red 
line: fit, black line: data). For the initial parameter 
intervals Programita finds the best fit for  

• σbest = 7.403 and ρbest = 0.0007 (some 28 parents) 
Since pattern 1 comprises only 25 points Programita gives 
you a warning. Click "ok and Programita continues calcu-
lating the best estimate of σbest for 25 parents under con-
stant σ2bestρbest (see discussion of equation C2) which is 
σbest = 7.835. Thus, Programita finds a best estimate for 
σ12 = 7.8 which is in good agreement with the parameter 
value under which the pattern was created (σ12 = 8). 

17) To optimize the parameter fit, press the button "Zoom". 
Programita now determines the probable range of the pa-
rameters. Programita finds  

• σbest = 7.842 and ρbest = 0.0006764 (some 27 parents). 
Correction of σ for 25 parents yields a best estimate of 
σ12 = 8.158 which is in excellent agreement with the pa-
rameter value under which the pattern was created (σ12 = 
8).  

18) Insert the results of the univariate analysis of pattern 2 
and confirm in the window for inserting the results of the 
univariate analyses by clicking “ok” and again “ok” in the 
window for null models. The window Fit of Neyman-Scott models to 
data  disappears. 

19) The simulation of 99 replicates of the Neyman-Scot null 
model shows that the data are well within the confidence 
envelopes of the null model: 
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20) We saved the settings and results of the fit of the 
bivariate Neyman-Scott null model to the data (C_N_1.fit) 
and use them now to estimate confidence intervals for the 
estimates of the parameters σbest and ρbest (see section 
"Constructing confidence intervals for σ and ρ"): 
 

 
 
The confidence intervals for an error < 0.016 are shown as 
bold intervals at the axes. We find σ ∈ (7.14, 8.55) and 
100*ρ ∈ (0.064, 0.072). The best estimate for 25 parents 
(black dots) is within the confidence interval. 

 
 

4.6.4. Antecedent cluster process (C_A_2.res) 

This artificial example is a variant of the previous example (example 
C_A_1.res) where pattern 1 is the same as in the previous example, but pattern 
2 was simulated only with 10 instead of 25 parents which were randomly se-
lected out of the 25 type 1 points. The (bivariate) parameters of pattern 2 were: 

• σ12 = 8, and  
• ρ12 = 0.00025.  

 
In a first step we analyzed the two univariate component patterns and in a sec-
ond step the bivariate pattern.  
 

1) Select the data file "C_A2.dat" in window Input data file. This 
artificial example was created with an antecedent cluster 



THORSTEN WIEGAND 

 

137 

process with parameters σ12 = 8 and ρ12 = 0.00025.  
1) select "List" in How are your data organized and "Data are given 

as a list in grid" in Select modus of data. 
2) click the button "change" in set maximal radius rmax and set the 

maximal scale r of the analysis to rmax = 50. 
3) click button "Calculate index", Programita shows you the 

pattern and calculates the O-ring function of the data. 
The visualization of the data shows that type 2 points 
are clearly clustered around type 1 points, but not 
around all type 1 points: 

 

 
 

4) For the univariate analysis of pattern 2 select the data 
file "C_A2_21.dat" in window Input data file. This is the data 
from "C_A2.dat" but pattern 1 and 2 are exchanged. The 
analysis fitting a univariate Neyman-Scott cluster yields 

• σ2 = 7.3 and ρ2 = 0.00027 (11 parents)  
which are in good agreement with the know parameters  

• σ12 = 8 and ρ12 = 0.00025 (10 parents). 
5) For the bivariate analysis highlight the data file 

"C_A2.dat" in window Input data file for the bivariate analysis.
6) select "List" in How are your data organized and "Data are given 

as a list in grid" in Select modus of data. 
7) click the button "change" in set maximal radius rmax and set the 

maximal scale r of the analysis to rmax = 50. 
8) click button "Calculate index", Programita shows you the 

pattern and calculates the O-ring function of the data. 
9) To determine Monte Carlo confidence intervals for a 

bivariate Neyman-Scott null model enable the check box 
"Calculate confidence interval" on the upper left. A win-
dow with settings for null models appears, select "clus-
ter process". A window with a selection of cluster proc-
ess null models appears, enable "Bivariate linked double-
cluster". 

10) The window Fit of Neyman-Scott models to data appears and asks you 
to provide the results of the univariate analysis of pat-
tern 1 and 2. The results of the univariate analysis are 
needed for performing the fit and for simulation the null 
model. Since your pattern is a random pattern, insert a 
high value for σ1 and a value for ρ1 that is below the in-
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tensity of pattern 1, and provide the results from uni-
variate analysis of pattern 2: 

• σ1 = 1111 and 100ρ1 = 0.1 (40 parents) 
• σ2 = 7.3 and 100ρ2 = 0.027 (11 parents) 

11) Click “ok” in the window for inserting the results of the 
univariate analyses and again “ok” in the window for null 
models. 

12) Programita calculates the g- and the L-function for r = 1 
to rmax and the window Fit of Neyman-Scott models to data appears. 
You can specify the tuning constants rmin, rmax, and c for 
the fit in the window "Fit cluster process": 

13) Select rmax = 1 and r0 = 50. The default power transforma-
tions c = 0.5 for the g-function and c = 1 for the L-
function are reasonable starting values. To optimize the 
g- and the L-function simultaneously enable "both, L- and 
g-function".  

14) Click the button "fit" and Programita searches the pa-
rameters of the bivariate Neyman-Scott model that simul-
taneously fits the g- and L- function of your data best 
(red line: fit, black line: data). For the initial pa-
rameter intervals Programita finds the best fit for  

• σbest = 7.779 and ρbest = 0.00065 (some 26 parents).  
Since pattern 1 comprises only 25 points Programita gives 
you a warning. Click "ok and Programita continues calcu-
lating the best estimate of σbest for 25 parents under 
constant σ2bestρbest (see discussion of equation C2) which 
is σbest = 7.933 which is in excellent agreement with the 
parameter value under which the pattern was created (σ12 = 
8).  

15) To optimize the parameter fit, press the buttons "Zoom" 
and “Fit”. Programita now determines the probable range 
of the parameters. Programita finds  

• σbest = 7.436 and ρbest = 0.00066 (some 27 parents).  
Correction of σ for 25 parents yields a best estimate of 
σ12 = 7.656 which is in good agreement with the parameter 
value under which the pattern was created (σ12 = 8). 

16) The simulation of 99 replicates of the Neyman-Scot null 
model shows that the data are well within the confidence 
envelopes of the null model: 

 

 
 

 
17) We saved the settings and results of the fit of the 

bivariate Neyman-Scott null model to the data (C_N_2.fit) 
and use them now to estimate confidence intervals for the 
estimates of the parameters σbest and ρbest (see section 
"Constructing confidence intervals for σ and ρ"): 
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The confidence intervals for an error < 0.036 are shown 
as bold intervals at the axes. We find σ ∈ (6.44, 8.52) 
and 100*ρ ∈ (0.060, 0.073). The best estimate for 25 par-
ents (black dots) is within the confidence interval. 
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4.7. Bivariate double-cluster process for antecedent condition 

4.7.1. Background 

The bivariate cluster process under antecedent condition assumes that points of 
pattern 1 are parents of pattern 2 and that pattern 1 is a random pattern. In real 
situations, however, this assumption may be violated and pattern 1 may itself 
show a clustered univariate structure. In this case we cannot determine the pa-
rameter ρ2 that determines the number of parents of pattern 2 (and which is used 
for simulation of the null model) with equation C6 because the univariate struc-
ture of pattern 2 does not follow a simple Neyman-Scott cluster process, but a 
double-clustered Neyman-Scott process. We thus generalize equation C5 and 
equation C6 for a double-clustered process where pattern 1 follows a Neyman-
Scott cluster process (equation C1), and some (or all) type 1 points are cluster 
centers for type 2 points: 
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with the four parameters: 
 

• σ2
1, the variance of the Gaussian distribution that determines the loca-

tions of type 1 points relative to their parents. The parameter σ2
1 needs 

to be determined previously through an univariate analysis of pattern 1 
• ρ1, the intensity of parents of pattern 1 and needs to be determined pre-

viously through an univariate analysis of pattern 1 
• ρ12,  a fitted parameter that theoretically yields ρ12 = λ1, 
• σ2

12, a fitted parameter that gives the variance of the Gaussian distribu-
tion that determines the locations of type 2 points relative to their (type 
1) parents. The value of this parameter should coincide with the parame-
ter σ2

2 determined through univariate analysis of pattern 2  
 
Note that equation C7 and equation C8 are the analogues to equation DC2 and 
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equation DC3, respectively, which describe a univariate double-cluster process.  
 
The first term of equation C7 (= 1) describes the situation where the two pat-
terns are independent (i.e., type 2 points are not clustered around type 1 par-
ents), the second term describes the additional effect of clustering of type 2 
points around type 1 parents with parameters σ2

12 and ρ12, and the third term 
describes the compound effect of clustering of the parents (= pattern 1) and the 
offspring (= pattern 2) around the parents (= pattern 1). The variance σsum

2 is the 
combined variance that describes the interaction of clumping at the two scales 
σ2

12 and σ2
1.  

 
If pattern 1 is a random pattern, the third term disappears and equation C7 col-
lapses back to equation C5. If type 2 points are independent from type 1 points 
(i.e., σ2

12 → ∞) it follows that σ2
sum → ∞ and equation C7 and equation C8 col-

lapse, as expected, back to a CSR process with g(r) = 1.  
 
A realization of the process described by equation C7 and equation C8 results in 
double clustering of pattern 2.  
 
 

 
 
Figure C6. Effect of variation in the parameters σ1

2, ρ1, σ12
2, and ρ12 on the shape of the bivari-

ate g-function under antecedent condition and double clustering (equation C7). (A) Influence of 
variance σ1

2 of the locations of type 1 points relative to their parents. Curves from top to bot-
tom: σ1 = 1, 2, 4, 6, 10, 16, 38. (B) Influence of the intensity ρ1 of the parents of type 1 points. 
Curves from top to bottom: ρ1 = 12, 19, 25, 38, 62, 125. The dashed line is the contribution of 
the first two terms only. (C) Influence of variance σ12

2 of the locations of type 2 points relative 
to type 1 points. Curves from top to bottom: σ1 = 6, 9, 12, 15, 18, 24. (D) Influence of the inten-
sity ρ12 of the parents of type 1 points. Curves from top to bottom: ρ12 =25, 38, 50, 75, 100, 125. 
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Performance of an analysis using a double-clustered Neyman-Scott process un-
der antecedent condition requires three steps:  
 

1. univariate analysis of patterns 1 
2. analysis of the univariate pattern of type 2 points within the framework 

of bivariate double-cluster processes 
3. the final bivariate analysis 

 
The parameters σ1 and ρ1 of the univariate analysis of pattern 1 are needed to fit 
equations C7 and equation C8 to the data (first step). The parameter ρ2 of the 
univariate analysis of pattern 2 (the intensity of type 1 points which are parents 
of type 2 points) is not needed for the fit of the bivariate process equation C7, 
but for simulation of the process. If pattern 1 is clustered (i.e., equation C7), the 
parameter ρ2 needs to be estimated by fitting the univariate g- and K-function to 
the expected g- and K-function of a univariate double-clustered Neyman-Scott 
process equation DC2 and equation DC3 (second step):  
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with the four parameters: 
 

• σ2
2, the parameter that gives the variance of the locations of type 2 

points relative to their parents (= type 1 points). 
• ρ2, the intensity of the parents of the type 2 points. 
• σ2

1, the parameter that gives the variance of the locations of type 1 
points relative to their parents. 

• ρ1 is the intensity of the parents of type 1 points. 
 
Comparison of the resulting parameters σ12

2 and ρ12 of bivariate double-cluster 
process under antecedent condition with the parameters of the two univariate 
component processes (σ1

2, ρ1, σ2
2, and ρ2) reveal how much type 1 points 

served actually as parent for type 2 points (the parameter ρ2, this information is 
needed for simulation of the null model) and whether there are some inconsis-
tencies which may indicate that this null model does not well describe the data.  
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If all type 1 points are parents we expect ρ12 = λ1 = ρ2 and ρ1 < ρ2. Thus, the 
fitted intensity of type 1 points should coincide with the known intensity of type 
1 points and there should be less parents of pattern 1 than parents of pattern 2. If 
only a certain proportion of type 1 points are parents of type 2 points we expect 
ρ12 = λ1, ρ1< λ1and ρ2 < λ1, thus the number of parents of type 1 points cannot 
exceed the number of type 1 points and there should be less parents of pattern 1 
than type 1 points. Additionally, we expect σ2

12 =σ2
2, thus the parameter σ2

12 
(that determines locations of type 1 points relative to their parents) which is 
fitted with the bivariate model (third step) should be the same as the correspond-
ing parameter σ2

2 fitted with the univariate model (second step).  
 
If ρ2 < λ1 Programita assigns in every simulation of the null model a different, 
randomly chosen, set of parents among all type 1 points for simulation of the 
locations of type 2 points.  
 
 

4.7.2. Bivariate double-cluster process (C_A_3.res) 

This artificial example uses the pattern of the dead trees (example NS_3b.res) as 
parents and creates offspring (= pattern 2) with parameters: 

• σ2 = 10 and 100ρ2 = 0.0542 (all 136 type 1 points are parents) 
We proceed in the three steps: (1) univariate analysis of patterns 1, (2) analysis 
of the univariate pattern of type 2 points within the framework of bivariate dou-
ble-cluster processes, and (3) the final bivariate analysis. 
 
First step: univariate analysis of pattern 1 using a simple 

cluster model: 

see example NS_3b.res. We found σ1 = 6.92 and 100ρ1 = 0.02. This 
corresponds to a cluster size of some 14m, and some 50 parent 

events. 

 

Second step: univariate analysis of pattern 1 using a double-

cluster model (C_A_3a.res): 

 
1) Select the data file "C_A3.dat" in window Input data file. This 

artificial example was created with an antecedent double-
cluster process.  

2) select "List" in How are your data organized and "Data are given 
as a list in grid" in Select modus of data. 

3) click the button "change" in set maximal radius rmax and set the 
maximal scale r of the analysis to rmax = 50. Select a 
ring width of dr = 3. 

4) click button "Calculate index", Programita shows you the 
pattern and calculates the O-ring function of the data. 
The visualization of the data shows that type 2 points 
are clearly clustered around type 1 points: 
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5) For the univariate analysis of pattern 2 enable the check 
box "Calculate confidence interval" on the upper left. A 
window with settings for null models appears, select 
"cluster process". A window with a selection of cluster 
process null models appears; enable "Univariate double-
cluster".  

6) The window “Univariate double-cluster Neyman-Scott” ap-
pears and asks you to provide the results of the univari-
ate analysis of pattern 1. The results of the univariate 
analysis are needed for performing the fit and for simu-
lation the null model. Provide the results from univari-
ate analysis of pattern 1: 

• σ1 = 6.92 and 100ρ1 = 0.02 (50 parents) 
 

7) Click “ok” in the window “Univariate double-cluster Ney-
man-Scott” and again “ok” in the window “Null models”. 

8) Programita calculates the g- and the L-function for r = 1 
to rmax and the window Fit of Neyman-Scott models to data appears. 
Select rmax = 1 and r0 = 80 an click the button "fit". 

9) Programita searches the parameters of equations 9 and 10 
that simultaneously fits the g- and L- function of your 
data best (red line: fit, black line: data). For the ini-
tial parameter intervals Programita finds the best fit 
for  

• σ2best = 10.053 and 100ρ2best = 0.0544 (136 parents) and 
σ22ρ2 = 0.055 

10) Note that Programita defines the default value of ρmax in 
a way that it yields the number of type 2 points (= 136). 
To increase the range of the parameter ρ set ρmax = 0.1 
and click “fit”. Programita now performs a new fit and 
finds  

• σ2best = 10.053 and 100ρ2best = 0.06182 (164 parents) 
and σ22ρ2 = 0.06248 

 
Because the estimate for ρ was larger than possible, Pro-
gramita calculates the best estimate of σ2best for 136 par-
ents under constant σ22bestρ2best (see discussion of equation 
C2) which is σ2best = 10.717. This parameter estimates coin-
cide well with the parameters under which the process was 
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created. 
11) To optimize the parameter fit, press the buttons "Zoom"

and “Fit”. Programita now determines the probable range 
of the parameters in the parameter space and performs a 
new fit. Programita finds  

• σ2best = 10.5 and 100ρ2best = 0.05772 (144 parents) and 
σ22ρ2 = 0.06372 

12) Because the estimated number of parents is higher than 
the number of type 1 points, Programita gives you a warn-
ing. Click "ok and Programita continues calculating the 
best estimate of σ2best for 136 parents under constant 
σ22bestρ2best (see discussion of equation C2) which is σ2best = 
10.822. 

13) To proceed with simulation of the null model, click the 
button ok in the window Fit of Neyman-Scott models to data and then 
“Calculate index”. 

14) The simulation of 19 replicates of the Neyman-Scot null 
model shows that the data are well within the confidence 
envelopes of the null model: 

 

 
 
 

 
Third step: bivariate analysis of using a double-cluster model 

(C_A_3b.res). 

 
1) Select the data file "C_A3.dat" in window Input data file. This 

artificial example was created with an antecedent double-
cluster process.  

2) select "List" in How are your data organized and "Data are given 
as a list in grid" in Select modus of data. 

3) click the button "change" in set maximal radius rmax and set the 
maximal scale r of the analysis to rmax = 50. Select a 
ring width of dr = 3. 

4) click button "Calculate index", Programita shows you the 
pattern and calculates the O-ring function of the data. 
The visualization of the data shows that type 2 points 
are clearly clustered around type 1 points: 
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5) For the bivariate analysis of pattern 2 enable the check 
box "Calculate confidence interval" on the upper left. A 
window with settings for null models appears, select 
"cluster process". A window with a selection of cluster 
process null models appears; enable "Bivariate double-
cluster".  

6) The window “Linked double-cluster Neyman-Scott” appears 
and asks you to provide the results of the univariate 
analysis of patterns 1 and 2. Provide the results from 
univariate analyses: 

• σ1 = 6.92 and 100ρ1 = 0.02 (50 parents) 
• σ2 = 10.822 and 100ρ2 = 0.0544 (136 parents) 

 
7) Click “ok” in the window “Univariate double-cluster Ney-

man-Scott” and again “ok” in the window “Null models”. 
8) Programita calculates the g- and the L-function for r = 1 

to rmax and the window Fit of Neyman-Scott models to data appears. 
You can specify the tuning constants rmin, rmax, and c for 
the fit in the window "Fit cluster process": 

9) Select rmax = 1 and r0 = 50. and click the button "fit" 
and Programita searches the parameters of the bivariate 
Neyman-Scott model that simultaneously fits the g- and L- 
function of your data best (red line: fit, black line: 
data). For the initial parameter intervals Programita 
finds the best fit for  

• σ12best = 10.127 and 100ρ12best = 0.0546 (125 parents) 
and σ212ρ12 = 0.05156 

This parameter estimates coincide well with the parameters 
under which the process was created. 

10) To optimize the parameter fit, press the buttons "Zoom" 
and “Fit”. Programita now determines the probable range 
of the parameters in the parameter space and performs a 
new fit. Programita finds  

• σ12best = 10.329 and 100ρ2best = 0.0496 (123 parents) 
and σ22ρ2 = 0.05292 

which coincides very well with the parameters under which 
the process was created. 

11) To proceed with simulation of the null model, click the 
button ok in the window Fit of Neyman-Scott models to data and then 
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“Calculate index”. 
12) The simulation of 19 replicates of the Neyman-Scot null 

model shows that the data are well within the confidence 
envelopes of the null model: 

 

 
 

13) To show the need to use a double-clustered process for 
fitting the parameter ρ2 of the univariate analysis of 
pattern 2 we repeat the analysis, but under the assump-
tion of a random structure of pattern 1 (i.e., σ12best
=1111). Now Programita finds best fits of  

• σ12best = 12.6 and 100ρ12best = 0.015 (37 parents) and 
σ212ρ12 = 0.0233 

which do not coincide at all with the original parameters 
under which the process was created (σ2 = 10 and 100ρ2 = 
0.0542 [all 136 type 1 points are parents]. 

 
 
 
 

4.7.3. Analysis dead trees and recruits (C_A_4.res) 

This example uses the univariate double-cluster process equation C9 and 
equation C10 to analyze the bivariate pattern of dead trees and recruits. As in 
the previous example, we proceed in three steps: (1) univariate analysis of pat-
terns 1, (2) analysis of the univariate pattern of type 2 points within the frame-
work of bivariate double-cluster processes, and (3) the final bivariate analysis. 
 
First step: univariate analysis of pattern 1 using a simple 

cluster model: 

 

see example NS_3b.res. We found σbest = 14.1 and ρbest = 0.000083. 
This corresponds to a cluster size of some 29m, and some 21 par-

ent events.  

 

Second step: univariate analysis of pattern 1 using a double-

cluster model (C_A_4a.res): 

 
1) Highlight the data file "Dead_recruits.dat" in window In-

put data file. This data set gives the location of dead trees 
and recruits at a meter scale, but has a resolution of 1 
centimeter. 

2) select "List" in How are your data organized 
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3) select "List with coordinates, no grid" in Select modus of 
data. A window opens asking you to provide a cell size. 
Insert "1.00".  

4) click the button "change" in set maximal radius rmax and set the 
maximal scale r of the analysis to rmax = 50. 

5) click button "Calculate index", Programita shows you the 
pattern and calculates the O-ring function of the data. 

6) For univariate analysis of pattern 2 assuming a double-
clustered process enable the check box "Calculate confi-
dence interval" on the upper left. A window with settings 
for null models appears, select "cluster process". A win-
dow with a selection of cluster process null models ap-
pears, enable "Univariate double cluster". 

7) The windows Fit of Neyman-Scott models to data and “Univariate dou-
ble-cluster Neyman-Scott” appears. Select the option 
“bivariate” in this window and provide the results of the 
univariate analysis of pattern 1: 

• σ1 = 6.916 and 100ρ1 = 0.0189 (some 49 parents).  
8) Click “ok” in the window “Univariate double-cluster Ney-

man-Scott” and again “ok” in the window “Null models”. 
Programita calculates the g- and the L-function for r = 1 
to rmax and the window Fit of Neyman-Scott models to data appears. 
Select rmax = 1 and r0 = 100 and click the button “fit”.  

9) Programita now searches the parameters of the bivariate 
Neyman-Scott model that simultaneously fits the g- and L- 
function of your data best (red line: fit, black line: 
data). As expected, the best fit is not very good: 

 

 
 

10) Programita finds for the initial parameter intervals the 
best fit  

• σ2best = 7.248 and 100ρ2best = 0.01197 (some 30 par-
ents)  

11) Because we adjust here parameters of the smaller-scale 
clustering we repeat the fit for a smaller maximum scale 
r0 = 35. For these scales, Programita finds for the ini-
tial parameter intervals the best fit  

• σ2best = 5.177 and 100ρ2best = 0.01741 (some 43 par-
ents) 

12) To optimize the parameter fit, press the buttons "Zoom" 
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and “Fit”. Programita finds as best estimates 
• σ2best = 5.246 and 100ρ2best = 0.01702 (some 43 par-

ents). 
13) For simulation of the null model click “ok” at the window 

Fit of Neyman-Scott models to data and click “Calculate index”. 
Programita simulates the confidence intervals of the uni-
variate analysis of pattern 2 using the best parameter 
estimates for σ2 and ρ2 and 43 type 1 points as parents. 
The simulation of 19 replicates of the Neyman-Scot null 
model shows that the data are well within the confidence 
envelopes of the null model (although the confidence en-
velopes are not symmetric around the data): 

 

 
 

 
Third step: bivariate analysis of using a double-cluster model 

(C_A_4b.res). 

 
1) Highlight the data file "Dead_recruits.dat" in window Input 

data file. This data set gives the location of dead trees and 
recruits at a meter scale, but has a resolution of 1 cen-
timeter. 

2) select "List" in How are your data organized 
3) select "List with coordinates, no grid" in Select modus of data. 

A window opens asking you to provide a cell size. Insert 
"1.00".  

4) click the button "change" in set maximal radius rmax and set the 
maximal scale r of the analysis to rmax = 50. 

5) click button "Calculate index", Programita shows you the 
pattern and calculates the O-ring function of the data:  
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6) For bivariate analysis assuming a double-clustered process 
enable the check box "Calculate confidence interval" on 
the upper left. A window with settings for null models ap-
pears, select "cluster process". A window with a selection 
of cluster process null models appears, enable "Bivariate 
linked double cluster". 

7) The windows Fit of Neyman-Scott models to data and “Univariate dou-
ble-cluster Neyman-Scott” appear and ask you to provide 
the results of the univariate analysis of pattern 1 and 
pattern 2. This data are important for performing the fit 
and simulating the null model. Insert  

• σ1 = 6.916 and 100ρ1 = 0.0197 (some 49 parents).  
• σ2 = 5.246 and 100ρ2 = 0.01702 (some 43 parents) 

Click “ok” in the window “Univariate double-cluster Ney-
man-Scott” and again “ok” in the window “Null models”. 

8) Programita calculates the g- and the L-function for r = 1 
to rmax and the window Fit of Neyman-Scott models to data appears. 
Select rmax = 1 and r0 = 35 and click the button “fit”.  

9) Programita now searches the parameters of the bivariate 
Neyman-Scott model that simultaneously fits the g- and L- 
function of your data best (red line: fit, black line: 
data).  

10) Programita finds for the initial parameter intervals the 
best fit  

• σ2best = 17.209 and 100ρ2best = 0.06 (some 150 parents). 
11) Because the estimated number of parents (=150) is higher 

than the number of type 1 points (136), Programita gives 
you a warning. Click "ok and Programita continues calcu-
lating the best estimate of σ12best for 136 parents under 
constant σ212bestρ12best (see discussion of equation C2) which 
is σ12best = 18.078. 

12) To optimize the parameter fit, press the buttons "Zoom" 
and “Fit”. Programita finds as best estimates 

• σ12best = 17.192 and 100ρ12best = 0.06023 (some 150 par-
ents). 

13) Because the estimated number of parents (=150) is slightly 
higher than the total number of type 1 points (remember 
that the theoretical expectation is ρ12 = λ1), Programita 
gives you a warning. Click "ok and Programita continues 
calculating the best estimate of σ12best for 136 parents un-
der constant σ212bestρ12best (see discussion of equation C2) 
which is σ12best = 18.089. 

14) Note that the estimate of σ12best (= 18.089) is much higher 
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than the estimate of σ12best (= 5.246) from the univariate 
analysis of pattern 2. This result indicates that there 
may be something wrong with assumption that the locations 
of the dead trees function as parents for the recruits.  

15) For simulation of the null model select a ring width of dr
= 3 and a maximal scale rmax= 100 and click “ok” at the 
window Fit of Neyman-Scott models to data and click “Calculate in-
dex”. Programita simulates the confidence intervals of the 
bivariate analysis using the best parameter estimates for 
σ12 and ρ12 and 43 type 1 points as parents. The simulation 
of 19 replicates of the Neyman-Scot null model shows that 
the data are well within the confidence envelopes of the 
null model: 
 

 
 

We obtain the same result when using the L-function Thus, 
the simulation of the double-clustered bivariate cluster 
null model does not reject the hypothesis that the loca-
tions of the recruits are clustered around the locations 
of the dead trees. 
 

19) Univariate analysis of the recruits using a double-cluster 
model (example DC_3.res) yielded the unbiased parameters 
of the large scale clumping: 

• σ1 = 14.4 and 100ρ1 = 0.0095 (some 24 parents). 
and the estimated parameters for the small-scale cluster-
ing are: 

• σ2 = 3.83 and 100ρ2 = 0.02165 (some 54 parents) 
 
The results of the analysis under the antecedent condition 
that the dead trees are the parents are:  
 

• first step: σ1 = 6.916 and 100ρ1 = 0.0197 (some 49 
parents). 

• second step: σ2 = 5.246 and 100ρ2 = 0.0170 (some 43 
parents) 

• third step: σ12 = 18.089 and 100ρ12 = 0.0544 (some 136 
parents). 

 
Thus, the clustering of the dead trees does not accord 
with the large-scale clustering of the recruits determined 
through univariate analysis using a double-cluster model 
(example DC_3.res) and consequently the estimate for σ2
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and σ12 are biased. This example shows that testing the 
null hypothesis of antecedent double-clustering requires 
extensive analyses of the univariate patterns and checking 
for internal consistency.  

 
 

4.7.4. Adult trees and recruits (C_A_5a.res) 

This example continues the analysis of example NS_4.res where we applied a 
bivariate Neyman-Scott cluster model to the data. We found that data may be 
described by a model that assumes random cluster centers (which may corre-
spond to patches with favorable conditions for the tree species) and clustered 
distribution of recruits and adult trees around the cluster centers. Here we as-
sume the alternative null model that the locations of the recruits are directly 
linked to the adult trees which correspond to an effect of a limited seed dispersal 
radius.  
 
We proceed in three steps: (1) univariate analysis of patterns 1, (2) analysis of 
the univariate pattern of type 2 points within the framework of bivariate double-
cluster processes, and (3) the final bivariate analysis. 
 
First step: univariate analysis of pattern 1 using a simple clus-

ter model: 

 
See example NS_3.res, we found  

• σ1 = 14.1 and 100ρ1 = 0.0083 (some 21 parent events). 
 

Second step: univariate analysis of pattern 1 using a double-

cluster model (C_A_5a.res): 

 
1) Highlight the data file "A_1.dat" in window Input data file. This 

data set gives the location of dead trees and recruits at 
a meter scale, but has a resolution of 1 centimeter. 

2) select "List" in How are your data organized 
3) select "List with coordinates, no grid" in Select modus of 

data. A window opens asking you to provide a cell size. In-
sert "1.00".  

4) click the button "change" in set maximal radius rmax and set the 
maximal scale r of the analysis to rmax = 50. 

5) click button "Calculate index", Programita shows you the 
pattern and calculates the O-ring function of the data. 

6) For univariate analysis of pattern 2 assuming a double-
clustered process enable the check box "Calculate confi-
dence interval" on the upper left. A window with settings 
for null models appears, select "cluster process". A win-
dow with a selection of cluster process null models ap-
pears, enable "Univariate double cluster". 

7) The windows Fit of Neyman-Scott models to data and “Univariate dou-
ble-cluster Neyman-Scott” appears. Select the option 
“bivariate” in this window and provide the results of the 
univariate analysis of pattern 1: 
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• σ1 = 14.1 and 100ρ1 = 0.0083 (some 21 parent events). 
8) Click “ok” in the window “Univariate double-cluster Ney-

man-Scott” and again “ok” in the window “Null models”. 
Programita calculates the g- and the L-function for r = 1 
to rmax and the window Fit of Neyman-Scott models to data appears. Se-
lect rmax = 1 and r0 = 100 and click the button “fit”, 
“Zoom” and “fit”.  

9) Programita now searches the parameters of the bivariate 
Neyman-Scott model that simultaneously fits the g- and L-
function of your data best (red line: fit, black line: 
data): 

 

 
Programita finds the best fit  

• σ1 = 3.3 and 100ρ1 = 0.02793 (some 70 parent events).  
10) For simulation of the null model click “ok” at the window 

Fit of Neyman-Scott models to data and click “Calculate index”. Pro-
gramita simulates the confidence intervals of the univari-
ate analysis of pattern 2 using the best parameter esti-
mates for σ2 and ρ2 and 70 type 1 points as parents. The 
simulation of 19 replicates of the Neyman-Scot null model 
shows that the data are well within the confidence enve-
lopes of the null model: 
 

 
 

 
Third step: bivariate analysis of using a double-cluster model 

(C_A_5b.res). 
 

1) Highlight the data file "A_1.dat" in window Input data file. This 
data set gives the location of dead trees and recruits at 
a meter scale, but has a resolution of 1 centimeter. 



USER MANUAL FOR PROGRAMITA 

 

154 

2) select "List" in How are your data organized 
3) select "List with coordinates, no grid" in Select modus of 

data. A window opens asking you to provide a cell size. In-
sert "1.00".  

4) click the button "change" in set maximal radius rmax and set the 
maximal scale r of the analysis to rmax = 50. 

5) click button "Calculate index", Programita shows you the 
pattern and calculates the O-ring function of the data.  

6) To determine Monte Carlo confidence intervals for a 
bivariate Neyman-Scott null model enable the check box 
"Calculate confidence interval" on the upper left. A win-
dow with settings for null models appears, select "cluster 
process". A window with a selection of cluster process 
null models appears, enable "Pattern 2 cluster process 
with parents = pattern 1". 

7) The window Fit of Neyman-Scott models to data appears and asks you to 
provide the results of the univariate analysis of pattern 
1. This data are important for performing the fit. Insert  

• σ1 = 14.1 and 100ρ1 = 0.0083 
• σ2 =  3.3 and 100ρ2 = 0.02793  

8) Click “ok” in the window for inserting the results of the 
univariate analyses and again “ok” in the window for null 
models. 

9) Programita calculates the g- and the L-function for r = 1 
to rmax and the window Fit of Neyman-Scott models to data appears. Se-
lect rmax = 1 and r0 = 35 and click the button “fit”.  

10) Programita now searches the parameters of the bivariate 
Neyman-Scott model that simultaneously fits the g- and L- 
function of your data best (red line: fit, black line: 
data).  

11) Programita does not find an appropriate fit for this data 
since the fitted number of parents (some 224) does always 
far exceed the number of adult trees (= 88). Playing 
around with different tuning constants does not change 
this result.  

12) We conclude that we have to reject the hypothesis that the 
recruits are directly linked to adult trees.  
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4.8. Bivariate hard- and soft-core processes 

The bivariate soft-core null model is a straight forward generalization of the 
univariate null model and follows basically equation HC4:  
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where d is the distance between the provisional point an its nearest accepted 
neighbour and p is an exponent that describes the “softness” of the process be-
tween the two points. If p → 0, equation HC5 yields a hard-core, and for large 
values of p (e.g., p = 11) equation HC5 yields a very soft core with pHC(d) ≈ 1 for 
d < δ.   
 
Programita distributes in a first step all points of pattern 2 and in a second step 
all points of pattern 2. Therefore we have to consider, in contrast to the univari-
ate case, three different situations:  
 

1. both points are type 1 points 
2. the provisional point is of type 2 and the nearest neighbour is of type 1 
3. both points are type 2 points 

 
Type 1 points are described by a disk with radius δ1/2, and type 2 points by a 
disk with radius δ2/2. The softness of the relation between points is described by 
three different exponents, describing the softness (1) between type 1 and type 1 
points (p1), (2) between type 2 and type 1 points (p12), and (3) between type 2 
points (p2). The parameters for the three cases of the bivariate soft-core process 
that follows equation HC5 are:  
 
 

1. p = p1 and δ= 2δ1 
2. p = p2 and δ= 2δ2 
3. p = p12 and δ= δ1 + δ2  
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4.8.1. Implementation of the hard-core null model 

Programita allows you to specify whether pattern 1 or/and pattern 2 has a soft-
core: 
 

• Only pattern 1 has a soft-core: 
You need to provide only the parameters p1 and δ1 for pattern 1. Pattern 
1 follows a soft-core null model, but the acceptance of a provisional type 
2 point does not depend on the distance d to its nearest accepted 
neighbor. Thus, the soft-core null model does not incorporate an interac-
tion between the two patterns. 

• Only pattern 2 has a soft-core, but no interaction between patterns: 
In this case you need to provide the parameters p1, p12, and δ1 for pattern 
2. If the exponent p12 that describes the repulsion of type 2 points by 
type 1 points is large (e.g., p12 = 11), acceptance of a provisional type 2 
points does not depend on the distance d to its nearest accepted type 1 
neighbor. Thus, the soft-core null model does not incorporate an interac-
tion between the two patterns.  

• Only pattern 2 has a soft-core, and type 1 - type 2 interaction oc-
curs: 
In this case you need to provide the parameters p1, p12, and δ1 for pattern 
2. If the exponent p12 that describes the repulsion of type 2 points by 
type 1 points is small (e.g., p12 < 0.5), acceptance of a provisional type 2 
points does depend on the distance d to its nearest accepted type 1 
neighbor. Thus, this soft-core null model incorporates an explicit inter-
action mechanism between the two patterns. 

• Both patterns have a soft core, but no interaction between patterns: 
In this case you need to provide all parameters p1, p2, p12, δ1, and δ2 for 
patterns 1 and 2, but the exponent p12 that describes the repulsion of type 
2 points by type 1 points is large (e.g., p12 = 11). In this case both pat-
terns show separately repulsion, but no interaction between the two pat-
terns is incorporated.  

• Both patterns have a soft core, and type 1 - type 2 interaction oc-
curs: 
In this case you need to provide all parameters p1, p2, p12, δ1, and δ2 for 
patterns 1 and 2, and the exponent p12 that describes the repulsion of 
type 2 points by type 1 points is small (e.g., p12 < 0.5). In this case pat-
tern 1 shows repulsion (it was created independently on pattern 2). Pat-
tern 2 is repulsed by points of pattern 1 and points of pattern 2 and may 
show an univariate structure with smaller scale repulsion (repulsion to 
type 1 points) and larger scale aggregation (because type 2 points have 
to be squeezed into the gaps of the existing pattern 1).   
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4.8.2. Example for soft core with interaction (HC_5.res) 

This artificial data set was created with a soft core process with parameters p1 
=11, δ1 = 2 cells, p2 = 0.1, δ2 = 3 cells, and p12 = 0. Thus, pattern 1 is basically a 
random pattern, type 2 points perceive type 1 points as having a hard core (there 
is always a minimal distance of δ12 = δ1 + δ2 = 5 between type 2 and type 1 
points), and type 2 points have a soft-core in relation to other type 2 points. We 
will first explore the univariate structures of two component patterns before 
performing the bivariate analysis. 
 

1) For univariate analysis of pattern 1 highlight the data 
file "HC5.dat" in window Input data file. The data file was cre-
ated with a bivariate hardcore null model with parameters 
p1 =11, δ1 = 2 cells, p2 = 0.1, δ2 = 3 cells, and p12 = 0. 

2) select "List" in How are your data organized 
3) select "Analyze all data in rectangle" in Give modus of analysis 
4) select "Data are given as list in grid" in Select modus of data 
5) click button "Calculate index" and Programita shows you 

the pattern: 
 

 
 

6) Enable the check box "Calculate confidence interval" on 
the upper left. A window with settings for null models 
appears. Select "Pattern 1 and 2 random", 99 simulation 
of the null model and click the button "Calculate index". 
Programita now performs the univariate analysis for pat-
tern 1 using a CSR null model. Pattern 1 is indeed a ran-
dom pattern (HC_5_unipat1.res):  
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7) For univariate analysis of pattern 2 highlight the data 
file "HC5_21.dat" in window Input data file.  

8) select "List" in How are your data organized 
9) select "Analyze all data in rectangle" in Give modus of analysis 
10) select "Data are given as list in grid" in Select modus of data 
11) click button "Calculate index" and Programita shows you 

the pattern and the univariate analysis without confi-
dence envelopes: 

 

 
 

12) The univariate O-ring statistic suggests that pattern 2 
has a hard core with δ2 = 4 cells. To test this hypothesis 
Select "Pattern 1 and 2 random", 99 simulation, and en-
able the checkbox “Hard core”. The window Hard core null model 
opens: 

 

 
 

13) Enable the check box "Radius of pattern 1" (univariate 
analysis) and provide the hardcore radius of pattern 1. 
The minimal distance between two points is the double of 
the hardcore radius. Next provide the hardcore radius and 
the exponent. The example is for a hard-core null model, 
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therefore select the exponent p = 0, click "ok", and 
click the button "Calculate index" "Radius of pattern 1" 
(univariate analysis) and provide the hardcore radius of 
pattern 1. The minimal distance between two points is the 
double of the hardcore radius, thus insert a radius of 2 
cells. Because the hypothesis is a hard core, select the 
exponent p = 0, click "ok", and click the button "Calcu-
late index". Programita now performs the simulations of 
the univariate hard-core null model (HC_5_unipat2a.res): 

 

 
 

14)  The null model does not well describe the data at scale 
r = 4. This result suggests that the process is perhaps a 
(almost hard-core) soft core process with a larger ra-
dius. Thus, we repeat the analysis with p = 0.1 and a ra-
dius of 3 cells (HC_5_unipat2b.res): 

 

 
 

This parameter now describe the pattern at scales r = 1 -
4 well, but there is a small departure at scale r = 5.  

15) For the bivariate analysis highlight the data file 
"HC5.dat" in window Input data file.  

16) select "List" in How are your data organized 
17) select "Analyze all data in rectangle" in Give modus of analysis 
18) select "Data are given as list in grid" in Select modus of data 
19) click button "Calculate index" and Programita shows you 

the pattern and the univariate analysis without confi-
dence envelopes: 

 

 
 

20) The bivariate O-ring statistic suggests a hard-core of 
pattern 1 with a distance δ12 = 4 or 5 cells. Therefore 
enable the check box “Radius of pattern 1” and “Radius of 
pattern 2”. Since pattern 2 may have a disc with radius 3 
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cells select for the random pattern 1 a radius of 2 cells 
p1 = 11, and p12 = 0. Select for pattern 2, as in the pre-
vious example (HC_5_unipat2b.res)), a radius of 3 cells 
and p2 = 0.1. 

21) click "ok", and then the button "Calculate index". Pro-
gramita now performs the simulations of the bivariate 
hard-core null model (HC_5.res): 
 

 
 
The bivariate hard-core null model describes the data 
well. 

 
 

4.8.3. Reanalysis of example Indep3 (HC_6.res) 

The data set of example Indep_3.res was created using used a bivariate soft-core 
process to simulate repulsion of points of pattern 2 in relation to points of pattern 
1 that previously was created by a CSR process. The parameters of the bivariate 
soft-core process were: radius = 3 and exponent p = 5 (for pattern 1), radius = 3 
and exponent p = 5 (for pattern 2), and the exponent for repulsion of pattern 2 by 
pattern 1 was p = 0.1. Thus, points of pattern 2 are placed at random with respect 
to already accepted points of pattern 2, but the probability pHC(d) to accept a 
provisional point of pattern 2 with a nearest neighbour of pattern 1 at distance d 
is given through equation HC5 with δ = 3 +3. Note that the univariate analysis of 
pattern 2 reveals aggregation at scales r = 1 - 5 which is a result of is non-
random creation process. 
 

1) highlight the data file "repulsion1.dat" in window Input data 
file. Pattern 1 is a random pattern and pattern 2 was created 
with an explicit repulsion mechanism: random provisional 
points of pattern 2 were only accepted if they had a near-
est neighbor distance of at least δ = 6 to a point of pat-
tern 1 and the probability of acceptance decreased with 
increasing distance to a point of pattern 1. 

2) select "List" in How are your data organized. 
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3) select "Analyze all data in rectangle" in Give modus of analysis 
4) select "Data are given as list in grid" in Select modus of data 
5) click button "Calculate index" and Programita shows you 

the pattern and the univariate analysis without confidence 
envelopes: 

 

 
 

6)  The univariate O-ring statistic of pattern 1 indicates a 
random pattern, and the bivariate O-ring statistic indi-
cates repulsion of type 2 points by type 1 points. 

7) To perform the univariate analysis of pattern 2 without 
confidence envelopes highlight the file "repul-
sion1_21.dat" in window Input data file and click button "Calcu-
late index". The univariate O-ring statistic of pattern 2 
indicates aggregation, and the bivariate O-ring statistic 
indicates repulsion between type 1 and type 2 points. 

8) With this diagnosis we parameterize the bivariate soft-
core model. The univariate analysis of pattern 1 suggests 
a random pattern, thus select p1 = 11. The univariate 
analysis of pattern 2 suggests no repulsion of type 2 
points (it shows aggregation), therefore select p2 = 11.
Because there is interaction between type 1 and type 2 
points with a relatively sharp soft-core enable the check 
box “Radius of pattern 1” and “Radius of pattern 2”. Be-
cause the interaction between type 1 and type 2 points 
shows a sharp soft-core with a minimal distance δ ≈ 6 se-
lect p1 = 0.1 and for both patterns a radius of 3 cells.  

22) click "ok", and then the button "Calculate index". Pro-
gramita now performs the simulations of the bivariate 
hard-core null model (HC_6.res): 
 

 
The bivariate hard-core null model describes the data 
well. The interesting feature of this process is that the 
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aggregation of pattern 2 was not caused by an explicit ag-
gregation mechanism but through repulsion by type 1 points 
which forced type 2 points into the random gaps left by of 
type 1 points.  

 
 
 

4.8.4. Example for cluster and hardcore (HC_7_res) 

This is the bivariate variant of example HC_4.res and shows the combination of 
the hardcore null model with a bivariate Neyman-Scott cluster null model, con-
tinuing the analysis of example NS_4.res. The pattern of adult trees showed at a 
fine resolution of 0.25 m a marked hard-core up to 1m and a peak at some 2.5 m, 
and the bivariate O-ring statistics at a fine resolution of 0.25 m showed a marked 
hard-core up to 1m and two peaks at some 3m and 6 m.  
 

1) Highlight the data file "A_1.dat" in window Input data file. This 
data set gives the location of adult trees and recruits at 
a meter scale, but has a resolution of 1 centimeter. 

2) select "List" in How are your data organized 
3) select "List with coordinates, no grid" in Select modus of 

data. A window opens asking you to provide a cell size. In-
sert "0.5", thus using a cell size of 50cm.  

4) click the button "change" in set maximal radius rmax and set the 
maximal scale r of the analysis to rmax = 50. 

5) click button "Calculate index", Programita shows you the 
pattern and calculates the O-ring function of the data.  

6) To determine Monte Carlo confidence intervals for the 
bivariate Neyman-Scott null model enable the check box 
"Calculate confidence interval" on the upper left. A win-
dow with settings for null models appears, select "cluster 
process". A window with a selection of cluster process 
null models appears, enable "bivariate Neyman-Scott" and 
press ok. 

7) Programita calculates the g- and the L-function for r = 1 
to rmax and the window Fit of Neyman-Scott models to data appears.  

8) Select rmax = 15 and r0 = 100. To optimize the g- and the 
L-function simultaneously enable "both, L- and g-
function". Click the button "fit" and Programita searches 
the parameters of the bivariate Neyman-Scott model that 
simultaneously fits the g- and L- function of your data 
best (red line: fit, black line: data).  

9) To optimize the parameter fit, press the button "Zoom". 
Programita now determines the probable range of the pa-
rameters. Next, press "fit" and Programita now searches 
the best fit. We find σbest = 36.6 and ρbest = 0.0000424. In-
sert the results of the previous univariate analysis of 
adult trees (HC_4.res): σ1 = 29.5 and ρ1 = 0.0000205., and 
recruits: σ2 = 25.47, ρ2 = 0.0000227 and press “check”. 
Programita calculates a theoretical σt = 27.6. Insert σ = 
25 in the window “Fitted parameters” and click “ok”. 

18) Enable the check box “Hard core” and the window Hard core null 
model appears. Enable the checkboxes "Radius of pattern 1" 
and "Radius of pattern 2" and provide the hardcore radius 
of pattern 1 and 2(in both cases a value of 2). The mini-
mal distance of two points is the double of the hardcore 
radius (i.e., δ = 4). Provide the exponent p = 0 for hard-
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core for p1, p2, and p12 and click "ok". The window Hard core 
null model disappears.  

19) click button "Calculate index" and Programita performs the 
99 simulations of the combined cluster and hard-core null 
model: 

 

 
Indeed, the combined hard-core and cluster null model de-
scribes the data well, even the first peak at 3m of the 
bivariate O-ring statistic, but recruits still show at-
traction at scale 6m. 
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4.9. Recommendations for selection of bivariate null models 

The bivariate analysis is more complicated than the univariate analysis because 
there are several basic null models (independence, random labeling, and 
antecedent condition) and because null models from the univariate case can be 
combined in several ways to obtain specific bivariate null models. Therefore, it 
is especially important to define the biological question, the hypothesis, and the 
biological circumstances carefully to be able to find an adequate null model. 
 

1. Visualize the patterns and perform univariate analysis of both patterns. 
Define the basic null hypothesis. If the univariate analysis indicated that 
both patterns were random, they are also independent. Otherwise, there 
are three conceptually different possibilities (i.e., independence, 
random labeling, antecedent condition) that lead to different proce-
dures for null models and different values for the expected g- or K- func-
tion under absence of interaction between the two types of points:  

a. Two different processes may have created the two patterns and in-
teractions between both types of points may have occurred. In this 
case the null hypothesis of independence may be appropriate. 

b. Two different processes created the two patterns, but pattern 1 al-
ready existed when pattern 2 was created. In this case the 
antecedent condition needs to be considered by selection of the 
appropriate null model. The locations of pattern 1 remain fixed 
and the null model distributes only pattern 2 in accordance to a 
specific univariate null model.  

c. The locations of both patterns were probably created by the same 
stochastic process and the labels (or marks) correspond to some 
events that acted independent from the process that created the lo-
cations of the points (e.g., tree dead or disease spread). In this 
case the null model of random labeling is appropriate.  

2. A common environmental factor affected both patterns in the same way: 
In this case, the two patterns are heterogeneous and are merged in joint 
clusters. Under this circumstance, a random labeling null model may be 
appropriate if the environmental heterogeneity constrained the locations 
of both patterns in the same way. A patchy distribution of resources can 
also be modeled with a bivariate Neyman-Scott cluster process. This null 
model includes the case of partly overlapping clusters (i.e., some clusters 
are only occupied by type 1or type 2 points), and each pattern may have a 
different cluster size. However, there is also heterogeneous Poisson proc-
ess null model with a similar effect: keep the locations of pattern 1 fixed 
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and randomize pattern 2 according to a heterogeneous Poisson process. 
An appropriate intensity function can be constructed using a moving win-
dow estimate of the joined intensity of pattern 1 and pattern 2, but with a 
relatively small radius R. 

3. The two patterns were created by different processes: In this case, you 
might use the toroidal shift null model to test for independence, i.e., 
keeping pattern 1 fixed and shifting the whole of pattern 2 by treating the 
study region as a torus. Of course, this works only if you have a rectangu-
lar study region. 

4. The two patterns were created by different processes related to different 
heterogeneous environmental factors: The appropriate null model for this 
hypothesis is to keep one pattern fixed and preserve the larger-scale het-
erogeneity of the other pattern, i.e., use a heterogeneous Poisson process 
to simulate pattern 2, and vice versa. An appropriate intensity function 
can be constructed using a moving window estimate of the intensity of 
pattern 2. The radius R of the moving window decides how closely you 
mimic the heterogeneity of pattern 2. 

5. The two processes were linked: An example for this possibility is a clus-
tered distribution of seedlings around adult trees e.g., due to a limited 
range of seed dispersal. In this case, the locations of trees have to be pre-
served, and the seedlings can be randomized following a Neyman-Scott 
process null model under antecedent condition where the parents are 
given through the pattern of adult trees. In this case, only one parameter 
of the cluster process has to be fit since the intensity of the parents is 
given through the density of pattern 1. Note that a similar effect of clus-
tering of seedlings around trees may arise if both patterns are strongly 
impacted by the same environmental factor. 
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