Ferramentas do usuário

Ferramentas do site


ecovirt:roteiro:pad_spat

Essa é uma revisão anterior do documento!


Estrutura Espacial

Nesse tutorial vamos tratar do reconhecimento de um dos padrões mais básicos de uma população de plantas: se os indivíduos estão espacialmente mais próximos ou mais afastados do que seria esperado se simplesmente fossem distribuídos ao acaso 1).

Objetivo

26_fha_rshow_terra3.jpg Investigar o padrão espacial em populações de plantas e discutir quais processos subjacentes poderiam gerar os padrões observados. Antes de tudo, porém, precisamos definir alguns conceitos.

Contexto

Um padrão espacial é uma estrutura previsível que pode ser detectada e quantificada. Em geral, considera-se que um padrão é uma estrutura diferente do aleatório, entretanto, no caso dos padrões espaciais (e outros também) o padrão aleatório também pode ser considerado um padrão, afinal tem 26_fha_rshow_terra5.jpgalguma previsibilidade 2) e pode ser detectado e quantificado. Existem diversas métricas utilizadas para descrever a distribuição de indivíduos que são capazes de diferenciar, com maior ou menor eficiência, os três padrões espaciais básicos: aleatório, homogêneo e agregado.

Padrões Espaciais

  • aleatório: a distribuição dos indivíduos não é diferente do que seria esperado por uma distribuição ao acaso;
  • regular ou homogêneo: os indivíduos estão regularmente espaçados. É chamado também de padrão disperso, pois está relacionado ao maior distanciamento possível entre indivíduos;
  • agregado: os indivíduos estão mais próximos do que esperado por um padrão aleatório, formando agrupamentos.

Detectar um padrão espacial pode ser importante tanto para entender os mecanismos que geram o padrão, como para decidir o método e a escala de amostragem e planejar o manejo de uma população. Algumas propriedades desejáveis de uma medida do padrão espacial são:

  • diferenciar claramente o padrão;
  • não ser afetada por: tamanho da amostra, densidade populacional ou pela variação no tamanho e na forma da amostra;
  • ser estatisticamente tratável: passível de calcular a incerteza do valor e testar a diferenças entre amostras.

Para essa prática usaremos uma estimativa de aleatoriedade de pontos chamada K-Ripley. Primeiro iremos utilizar dados de distribuição simulados com diferentes padrões e em seguida utilizar a mesma técnica para detectar o padrão espacial em uma população natural.

Roteiro

Padrões multiescala

pattern.jpg

Nesta prática vamos quantificar o padrão espacial usando um método multiescala. Os métodos de multiescala permitem, com uma única métrica, avaliar como o padrão espacial varia com a escala. Iremos descrever o padrão espacial para o conjunto total de indivíduos em uma população em uma área delimitada e iremos avaliar o padrão desde a escala da vizinhança dos indivíduos até a escala mais ampla da população.

mandelbrot-fractals-o.gif

Para a prática vamos utilizar um programinha chamado Programita, feito pelo pesquisador Thorsten Wiegand para quantificar o padrões espaciais usando medidas multiescala baseadas em distância entre pontos. Para baixar o manual do Programita clique

aqui.

No Programita existem várias medidas que podem ser usadas para calcular o padrão espacial, vamos usar duas delas: o L de Ripley e o O-ring.

Ambas são abordagens baseadas em pontos, que utilizam o cálculo de distâncias ponto a ponto dentro de uma área delimitada. Essas medidas podem ser usadas para análises univariadas, ou seja, identificando o padrão para uma única classe de pontos, ou para análises bivariadas, que identifica o padrão entre dois tipos de pontos. As análises bivariadas podem ser usadas no contexto de populações para verificar se indivíduos de um dado estágio estão espacialmente associados a outro, ou no contexto de estruturação de comunidades para analisar se há atração ou repulsão na ocorrência de uma espécie em relação a outra.

K de Ripley

ripleys_game.jpg

O K de Ripley é uma medida da densidade média ao redor de cada ponto. Para cada ponto na área de estudo é calculada a densidade no interior de um círculo de raio r centrado no ponto (área cinza da figura). Em seguida, calcula-se uma média desses valores obtidos para todos os pontos.

lripley.jpg Figura: Implementação da estatística L de Ripley: contagem do número de pontos distantes de i no interior do círculo de raio r. Extraído de Wiegand & Moloney (2004).

A operação é repetida para diferentes valores de r, que permite avaliar de maneira contínua o valor de K para diferentes escalas.

$$ K_{(r)} = \frac{\sum_{i\neq{j}}^{i}I({d_{ij}<r})}{n}\frac{1}{\lambda}$$

Onde:

  • $d_{ij}$ é a distância do ponto $i$ ao ponto $j$;
  • $I({d_{ij}<r})$ função indicadora, sendo 1 se o ponto $j$ está a uma distância menor que $r$ do ponto $i$ e 0 se o ponto $j$ está fora desse raio $r$ ao redor de $i$;
  • $n$ é o número de pontos total;
  • $\lambda$ é a densidade dos pontos.

A interpretação visual do K não é muito intuitiva por ser uma função cumulativa associada à área do círculo relativo a r. O L de Ripley, por sua vez, é a padronização deste valor:

$$ L_{(r)}= (\sqrt{\frac{K_{(r)}}{\pi}}-r) $$

Esta transformação faz com que o valor de L para uma distribuição completamente aleatória seja sempre 0 e L > 0 indica agregação, enquanto L < 0 indica padrão homogêneo.

O-ring (O(r))

Onion ring to rule them all

A estatística O-ring é similar ao L de Ripley, mas baseada em um anel, ao invés de um círculo. É medida pela contagem do número de pontos em um anel de raio r e largura fixa. Da mesma forma que o L-Ripley também são calculadas as intensidades para diferentes tamanhos de anel, mantendo a largura fixa.

o-ring.jpeg Figura: Implementação da estatística O-ring: contagem do número de pontos distantes de i ao longo do raio r. Extraído de Wiegand & Moloney (2004).

Logo, definimos $O(r)$ como: $$ O_{(r)} = L_{(r)} - L_{(r-l)}$$

Onde:

  • $r -l$ : é o raio menos a largura do anel 3)

Na completa aleatoriedade espacial $O(r) = \lambda$ (intensidade do padrão), quando o padrão é agregado $O(r) > \lambda$ e quando é homogêneo $O(r) < \lambda$

As medidas $K_{(r)}$, $L_{(r)}$ ou $O_{(r)}$ apresentam soluções analíticas teóricas para o padrão definido como processo Poisson ou Completa Aleatoriedade Espacial (CAE). Ou seja, quando a distribuições dos pontos no espaço estudado não é diferente do esperado pelo acaso. Para uma dada densidade de pontos conseguimos calcular esses valores teóricos para qualquer raio. Dessa forma, para interpretar o padrão espacial dos pontos observados precisamos:

  • calcular os valores observados e o teóricos para CAE;
  • comparar esses valores;
  • definir quando uma diferença é ou não aceitável para afirmar que o padrão é diferente do aleatório;

Para os dois primeiros tópicos acima, usamos as fórmulas e calculamos os valores. Para tirar a subjetividade do terceiro, podemos calcular intervalos de confiança ou gerar envelopes4) de confiança por simulações computacionais, para definir objetivamente o que é algo diferente do esperado para a CAE.

Padrões de Pontos Simulados

Atividade 1:

escala.jpg Qual processo gerou o padrão de pontos?

Instruções gerais

  • 1. baixe os arquivos relacionados ao padrão espacial 1 ou 2. Caso abra uma página mostrando os dados, clique no link com o botão direito do mouse para salvar o arquivo no seu computador:
  • caso não tenha o programita instalado, baixe o programita aqui na mesma pasta do arquivo de dados;
  • descompacte o arquivo programita.zip;
  • clique 2x para abrir o arquivo executável ProgramitaJulio2006.exe.

Bem vindo(a) ao Programita! Agora vamos abrir os dados que iremos trabalhar.

O Programita aceita arquivos de texto das extensões .dat e .asc. São arquivos em formato de texto, separados por tabulação (ou espaço). Os arquivo de dados possui a seguinte estrutura:

A primeira linha contém informações gerais sobre o arquivo de dados:

  • valor mínimo de x;
  • valor máximo de x;
  • valor mínimo de y;
  • valor máximo de y; e
  • número total de indivíduos

A partir da segunda linha, estão os dados dos pontos que serão analisados:

  • primeira coluna com as coordenadas x dos indivíduos;
  • segunda coluna com as coordenadas y dos indivíduos;
  • terceira coluna com os pontos do padrão 1 identificados por 1 e do padrão 2 por 0 5);
  • quarta coluna com os pontos do padrão 1 identificado por 0 e do padrão 2 por 1 6).

No caso de dados univariados, a terceira coluna será sempre 1 e a quarta coluna sempre 0. Para dados bivariados as terceira e quarta colunas terão valores de 0 e 1 de acordo com o padrão do ponto.

ex_dados.png Fig. Exemplo de arquivo .dat no formato de uso no Programita.

Padrão Univariado: todos os pontos

  • 1. Verifique se na janela Input data file estão aparecendo os arquivos .dat. Caso não esteja, verifique se o arquivo executável do programita está na mesma pasta dos arquivos .dat.

Dependendo da configuração do seu navegador o arquivo salvo pode aparecer com uma extensão diferente (p.ex. “.bin”). Nesse caso é preciso mudar a extensão do arquivo para “.dat”.

  • 2. no menu à esquerda selecione o arquivo padrao“0X”all.dat. No caso X vai ser 1 ou 2 dependendo da sua escolha;

arquivos.png Figura. Janela de entrada de dados do Programita.

  • 3. Em How your data are organized selecione List
  • 4. Vamos começar usando o L de Ripley então em Which method to use selecione Circle
  • 5. Em Select modus of data selecione List with coordinates no grid. Ao selecionar esta opção aparecerá uma janela com a opção Select a new cell size:

cell_size.png.

  • 6. Caso tenha menos de 500 pontos, altere o proposed cell size para 1. Caso contrário deixe no padrão do programa.
  • 7. Feito tudo isso, você deve estar assim:

programita.jpg

  • 8. Você pode agora respirar fundo e apertar o botão Calculate index;

A saída visual do programa é um mapa onde os indivíduos aparecem em pontos vermelhos, seguindo as coordenadas do arquivo de dados. O gráfico no canto superior direito corresponde ao valor do L-Ripley para diferentes raios. Nessa saída gráfica é possível analisar como o padrão espacial varia de acordo com a escala.

Porém, isso não é suficiente para afirmamos em que escalas a população é agregada. Para isso precisamos comparar o resultado observado com o padrão que seria gerado pela distribuição dos pontos completamente aleatório. Esse modelo nulo é chamado de completa aleatoriedade espacial. Para gerar esse modelo por simulação é necessário recolocar o mesmo número de pontos de forma aleatória na mesma área. Se fizermos isso, muitas e muitas vezes, é possível gerar um envelope de confiança (similar ao intervalo de confiança) no qual o padrão de distribuição aleatória é encontrado. Se os valores observados estão contidos dentro do envelope podemos concluir que nosso padrão não é diferente do aleatório.

Para fazer isso você deve:

  • 9. selecionar a opção Calculate confidence limits e;
  • 10. na janela Select a null model selecionar o modelo nulo Pattern 1 and 2 random;
  • 11. verifique se sua tela está como a figura e clique novamente no botão Calculate index.

null_model.png

Caso a simulação esteja demorando muito

  • aperte o botão de stop ao lado do Calculate index;
  • selecione outro “modus of data” e em seguida selecione novamente list with coordenate,…;
  • na janela Select a new cell size, altere proposed cell size para 2;
  • na janela Select a null model altere # simulations para 20;
  • aperte novamente o botão Calculate index;

Descreva o padrão observado

O Programita permite acompanhar graficamente a simulação ao longo do tempo ;-). É possível observar que a cada simulação é gerada uma distribuição aleatória dos indivíduos e recalculado os valores de L-Ripley. Ao final é gerado o gráfico com os valores observados a partir do arquivo de dados, acompanhado do envelope de confiança gerado a partir da simulação de completa aleatoriedade espacial. Valores fora do intervalo de confiança indicam a existência de um padrão espacial diferente do aleatório.

Dica: Faça um Print Screen dos seus resultados para salvar o gráfico de cada análise que fizer ao longo da prática.

  • 12. Faça o mesmo procedimento, porém em Which method to use selecione Ring
  • 13. Compare os resultados entre o L-Ripley e o O-Ring.

Atividade

  • repita a análise para os arquivos com:
    • os pontos dos parentais (adultos): padrao“0X”par.dat e;
    • os pontos dos pontos associados - prole (jovens): padrao“0X”prole.dat;
  • interprete o resultado para cada tipo de ponto;

Padrão Bivariado: duas classes de pontos

O Programita permite a análise de padrão de pontos de uma classe em relação a outra. Para isso é necessário diferenciar os pontos no arquivo de dados, utilizando 0 ou 1 nas colunas 3 e 4, como mostra a figura abaixo, em um arquivo que distinguia indivíduos adultos de juvenis:

ex_dados2.png

Vamos agora analisar o padrão dos pontos associados (PROLE) em relação aos parentais (PAR), seguindo o mesmo procedimento anterior.

  • 1. selecione o arquivo com a separação de classes de pontos parentais e associados: padrao“0X”bi.dat;
  • 2. em What do you want to do selecione a opção Point-pattern analysis
  • 3. em How your data are organized selecione List
  • 4. neste caso, estamos interessados na análise do padrão em escala cumulativa para entender até que distância há agregação, por isso, em Which method to use selecione L-Ripley
  • 5. em Select modus of data selecione List with coordinates no grid
  • 6. para testarmos se existe agregação dos pontos PROLE em relação ao PAR , utilizaremos o envelope de confiança. selecione a opção Calculate confidence limits e selecione o modelo nulo Pattern 1 fix, 2 random.
  • 7. rode a análise apertando: Calculate index
  • 8. interprete os resultados.

Descubra o algoritmo

Algoritmo é uma sequência de passos para executar uma tarefa. Os pontos dos arquivos de dados foram gerados por um algoritmo muito simples em duas fases: primeiro foram gerados os pontos parentais e em seguida os pontos associados (prole). Descreva uma sequencia de tarefas 7) que seria capaz de gerar a distribuição de pontos (incluindo ambas classes de pontos) que você observou a partir do seu arquivo de dados.



Distribuição Espacial de Palmitos na Restinga

palmito00.jpg O Palmiteiro (Euterpe edulis Mart.) é uma espécie muito característica das florestas atlânticas e costuma ocorrer com densidades altas em áreas mais preservadas. Vamos agora analisar os dados referentes a uma população de palmitos que ocorre em uma parcela de floresta de Restinga na Ilha do Cardoso, Cananéia -SP. Os dados foram coletados nos anos de 2009/2010 em uma área de 10,24ha (320m x 320m).

Preparamos três arquivos no formato lido pelo Programita:

  1. dados de indivíduos juvenis (diâmetro do tronco entre 1 e 5 cm): juvenil.dat
  2. dados de indivíduos adultos (diâmetro do tronco > 5 cm): adulto.dat
  3. juvenis e adultos (padrão 1 adulto, padrão 2 juvenil): juvenil_adulto.dat



Utilizando as ferramentas disponíveis no Programita para descrever os padrões espaciais:

  • da população total de palmito;
  • apenas dos juvenis e;
  • apenas dos adultos.

Investigue se a distribuição dos juvenis está associada a dos adultos.

Padrões & Processos Junte-se em um grupo de 2 a 4 alunos e discuta quais possíveis processos poderiam gerar os padrões descritos.

1)
ou seja, a localização de um indivíduo não melhora a predição de onde outros indivíduos podem estar
2)
por exemplo, em relação ao número médio de indivíduos
3)
igual ao raio interno do anel
4)
equivalente a intervalo de confiança obtido por simulação numérica
5)
no caso de dados bivariados
6)
tb. no caso de dados com dois tipos de pontos
7)
p.ex: gerar 10 valores de x a partir de uma distribuição aleatória uniforme de 0 a 100; gerar valores de uma sequência de 10 a 90 a cada intervalo de 5 como o y….
ecovirt/roteiro/pad_spat.1632747867.txt.gz · Última modificação: 2021/09/27 10:04 por adalardo