ATENÇÃO: ESTA PÁGINA É UMA VERSÃO ANTIGA DO ROTEIRO E ESTÁ DESATIVADA, PARA ACESSAR O ROTEIRO ATUAL ACESSE ESTE LINK
No modelo de Metapopulations and propagule rain - Tutorial in EcoVirtual a colonização era constante e independente da fração de manchas ocupadas. Eliminando o pressuposto de uma chuva de propágulos constante e relacionando a colonização com a fração de manchas ocupados chegamos ao modelo clássico de metapopulações descrito por Richard Levins em 1969. Em uma formulação simples desse modelo, a fonte de propágulos é unicamente interna (sistema fechado) e a probabilidade de colonização varia de forma linear à proporção de lugares ocupados.
Nessa formulação, nosso modelo não terá mais uma probabilidade de colonização constante (pi), mas sim uma probabilidade de colonização dependente do número de manchas ocupadas:
pi=if
onde i é uma constante que indica quanto aumenta a probabilidade de colonização a cada nova mancha que é ocupada. Portanto, quanto mais manchas ocupadas, maior a chance de colonização das manchas vazias. Substituindo pi na equação antiga temos:
dfdt=if(1−f)−pef
O cálculo da fração de manchas ocupadas no equilíbrio (ˆf→dfdt=0) também é modificado para:
ˆf=1−pei
Vamos tentar entender esse modelo a partir da simulando computacional desse cenário. Como no roteiro Metapopulations and propagule rain - Tutorial in EcoVirtual, criamos uma função no R para gerar a simulação. Esta função sorteia eventos de colonização e extinção em cada mancha a cada intervalo de tempo, segundo as regras do modelo e os parâmetros definidos pelo usuário. Em seguida retorna um gráfico da trajetória do número de manchas ocupadas e as matrizes de ocupação das manchas em cada instante de tempo. Para rodar esse modelo no EcoVirtual entre os valores dos argumentos na janela da opção de Internal colonization do sub-menu Metapopulation
Nesse menu os argumentos são:
opção | parâmetro | definição |
---|---|---|
data set | objeto no R | guarda os resultados |
Maximum time | tmax | Número de iterações da simulação |
columns | ncol | número de colunas de habitat da paisagem |
rows | nrows | número de linhas de habitat da paisagem |
initial occupance | f0 | no. de manchas ocupadas no inicio |
colonization coef. | i | coeficiente de colonização i |
prob. extinction | pe | probabilidade de extinção |
E agora você pode simular o modelo com os valores que escolher para os argumentos da função, como:
tmax=100;ncol=10;nrow=10;f0=0.1;i=1;pe=0.5
Brinque um pouco com o modelo variando os parâmetros e tentando responder as seguintes perguntas: