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Figure 6.1 The number of pupae of the green bottle (sheep blowfl y), in a laboratory population 
monitored every two days for two years. Data kindly made available to researchers by Robert 
Smith and colleagues (see http://mcs.open.ac.uk/drm48/chaos/).1
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… even if it were the case that the natural laws had no longer any secret for us, we could 
still only know the initial situation approximately . . . it may happen that small differ-
ences in the initial conditions produce very great ones in the fi nal phenomena. A small 
error in the former will produce an enormous error in the latter. Prediction becomes 
impossible . . . 

—Henri Poincaré (1908).2

Centuries before King Harold of England famously received an arrow in the eye 
(AD 1066), Chinese offi cials in the T’ang dynasty (AD 618–907) began collecting annual 
reports on the abundance of migratory locusts.3,4 The primary aim of this initiative was 
to make sense of the changes over time (the dynamics) of this devastating agricultural 
pest, and thereby predict the timing and intensity of outbreaks. Now, despite a stagger-
ing 1,300 years of faithful recording, few patterns are evident and the data look decidedly 
messy.5 Irregular climatic fl uctuations, particularly those involved in the drying up of 
grasslands on river deltas, may explain some of the variability.4 However, one might 
wonder whether some of this ‘messiness’ was internally driven, caused by some sort of 
‘feedback’ arising within the dynamics themselves. Many long-term data sets on popu-
lation dynamics have these extremely messy qualities, ranging from the daily number 
of damselfi sh reaching maturity on the Great Barrier Reef 6 to the  number of feral sheep 
on Scottish Islands,7 and it is important to know where it all comes from.

The study of ‘chaos’ (easiest to defi ne negatively as an absence of order, but we will 
get to a more formal defi nition later) has its roots in precisely the type of feedback proc-
esses referred to above, refl ecting what mathematicians call ‘non-linearities’ (relation-
ships that are not straight lines). Several mathematicians, most notably, the eminent 
French mathematician Henri Poincaré (1854–1912), had long noted that non-linear sys-
tems could generate some extremely unusual dynamics, such that the precise trajec-
tory a system took was highly sensitive to the initial conditions. However, observations 
such as these were largely overlooked by ecologists until a new generation of research-
ers, notably Robert May (a physicist turned ecologist, now Lord May of Oxford), began 
toying with their own simple ecological models and appreciating that the behaviour of 
these models was not always simple.8,9 Until ecologists were made aware of the poten-
tial effects of non-linearities in the 1970s, the prevailing view was that complex dynamics 
must have complex causes. One of the many benefi ts of the development of chaos the-
ory is that it has led to an appreciation that sometimes extremely complicated dynam-
ics can arise out of the simplest and most innocuous looking of mathematical models, 
even those without any elements of chance built in.

We begin this chapter by describing one such simple model with potentially com-
plicated dynamics, called the ‘discrete-time logistic growth model’. A version of the 
logistic model was introduced in 1838 by Pierre François Verhulst (and later rediscov-
ered by Raymond Pearl10) in an attempt to formalize arguments he encountered in 
Thomas Malthus’ An Essay on the Principle of Population11 (an essay that also had a 
famous infl uence on Charles Darwin’s ideas). This mathematical model will help defi ne 
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what chaos is, and how it is arrived at, before we go on to ask our ultimate question of 
whether natural populations fl uctuate in a chaotic manner. If chaotic dynamics are a 
common feature of natural population fl uctuations, then it has all sorts of implications 
for conservation biology, disease control, and many other areas of ecology; therefore, 
we take time to consider what a ‘yes’ answer would mean for ecology. We also ask some 
related questions, such as whether natural selection tends to produce population fl uc-
tuations that lack chaotic dynamics, and whether human intervention can make some 
non-chaotic populations chaotic and vice versa.

The fi sh pond
Imagine a population of fi sh in a pond. We census the population each year at the end 
of the breeding season; let the symbol xt represent the population size of these fi sh 
in generation t, expressed as a fraction of the absolute maximum number of fi sh that 
could ever live there (this conveniently helps keep all numbers between 0 and 1). How 
might xt vary over consecutive generations? At extremely low densities, each individ-
ual would have access to plenty of resources so it is likely that each individual would 
produce a relatively high number of offspring. In contrast at high density, individuals 
would be competing over resources, so that each individual would not leave as many 
surviving offspring. In effect, the population should ‘feedback’ on itself—at low popula-
tion densities the per capita population growth rate would be relatively high, but at high 
population densities the per capita population growth rate would be relatively low. It is 
a good bet that something like this goes on in many populations—after all, no species 
on the planet goes through permanently unfettered geometric growth. We know this for 
sure, because (as Darwin had argued in the case of elephants12), were it any different, 
we would soon be up to our eyeballs in them.

How do we express this type of ‘density-dependent’ feedback mathematically? There 
are lots of different ways, many of which would yield qualitatively similar results, but 
one of the simplest is to simply let xt!1 " r xt (1#xt) where r is a mathematical constant. 
Although we have largely avoided formal mathematics in this book, in this case it is 
worth working through the implications of this simple equation because of the insights 
that it provides. Here we see that when xt is extremely small, then the index of popu-
lation density in the next generation (xt!1) is approximately r xt (since 1#xt is approxi-
mately equal to 1). In other words, the per capita population growth rate is almost r 
when the population size is small. Yet, when we increase xt the feedback term (1#xt) 
now becomes increasingly smaller, so the per capita population growth rate diminishes. 
The mathematical function we have assumed might appear somewhat arbitrary, and 
probably there is not a population on Earth that actually shows precisely this dynamic, 
but it does the trick of introducing a feedback, and it makes sense to start with a simple 
rule. We also note in passing that this is a discrete-time version of the logistic equa-
tion, representing population size in the next generation as a function of  population 
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size in the current generation. As such, the equations used to predict the changes in 
 population size are called ‘difference equations’. However, we could let generation time 
tend to zero and end up with smoother, completely continuous changes in population 
size. Under these conditions, we would have a ‘differential equation’ (the way the logis-
tic equation is often presented in ecology textbooks) and in this case the tools of calcu-
lus could be used to understand their dynamics.

Let us get back to the discrete-time logistic equation. We can see directly that the 
feedback involves a non-linearity when we plot xt!1 against xt for a variety of values of xt 
between 0 and 1 (Fig. 6.2). Thus, when xt " 0 then the predicted population size in the 
next generation (xt!1) is 0. Equally, when xt " 1 then xt!1 " 0 (since 1#xt " 0). Hence, 
only intermediate values of xt generate non-zero values for xt!1 and the end result is 
a curve that bends over on itself rather like a hairpin (a ‘fold’). In fact, these particular 
curves are ‘parabolas’ (yes, the trajectory of a cannon ball we all know and love from 
high-school mathematics). Interestingly, increasing the value of r increases the inten-
sity of the feedback and hence the severity of the folding (Fig. 6.2).

To see what dynamics are predicted by the model, we can start with a particular 
index of population density x0 (e.g. 0.4) and simply update the equation iteratively 
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Figure 6.2 A ‘map’ of population density xt against xt!1 as assumed by the logistic equation. 
Increasing the value of r increases the curvature of the relationship because changes are higher 
the higher the value of r. The graph also shows a line (dotted) in which xt is plotted against xt!1, 
allowing us to highlight where potential equilibria occur (for r " 2 population densities move 
towards this equilibria, but for r " 3.5 population changes are just too lumpy to allow the equilib-
rium to be converged upon and population densities vary around this equilibrium instead.
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(i.e. in steps), calculating x1 and placing it back into the equation to fi nd x2 and so on. 
You can try yourself—it requires no mathematics beyond arithmetic—yet had you done 
these simple calculations in the 1960s, and realized their signifi cance, then you would 
have made an important scientifi c discovery. It turns out that the type of dynamics one 
predicts is only dependent on the value of r (and not the value of x in the starting gener-
ation). If r is relatively small (e.g. 2), then the fi sh population size always rises to a single 
value (the ‘equilibrium’) and stays there indefi nitely (see Fig. 6.3a). The more mathem-
atically minded reader might wish to confi rm, by setting xt!1 " xt, that this equilibrium 
is (r # 1)/r. Equilibria similar to these have a certain appeal and they imply a reassur-
ing sense of stability and order. Indeed, before the 1970s, equilibrium solutions were 
the type of result most ecologists concentrated on when developing and exploring their 
models,13 almost going out of their way to ignore complications.14 The oversight comes 
in part from the absence of fast computers to help visualize the dynamics (the fastest 
computers in the world in 1970 were several orders of magnitude slower than a good 
modern desktop15), and it is no coincidence that the development of ideas about chaos 
came with the increase of computing power.

As we increase r further, then strange things happen. First, we get regular repeated 
cycles occurring in which the population overshoots the equilibrium then undershoots 
it, overshoots, then undershoots (Fig. 6.3b). This can be seen as a simple consequence 
of the discrete (‘lumpy’) nature of the change—the higher r, the higher the potential size 
of the changes from generation to generation, and the less fi ne-scale adjustment is pos-
sible (rather like adjusting temperature in a shower, in which the time delay between 
adjusting the handle and experiencing its effects means you can never get it just right). 
In Fig. 6.3a, the population compensates for being above or below the equilibrium 
value, so that each generation is closer to the equilibrium than the last. However, a 
higher r value makes the system feedbacks larger, and this higher sensitivity tends to 
lead to overcompensation and so the population never settles down to the equilibrium, 
but fl uctuates around it. Note that although the system shown in Fig. 6.3b does not set-
tle down to a single equilibrium, the dynamics are entirely predictable, so that the size 
of the population is always exactly as it was four generations previously. Increasing the 
value of r still further produces dynamics that seem to lack any sort of pattern at all 
(Fig. 6.3c)—it is no longer a question of consistently overshooting and undershooting 
but rather irregular behaviour that never quite repeats itself. Welcome to the world of 
chaos. There are no elements of chance whatsoever built into these dynamics (in the 
jargon, the model is ‘deterministic’, as opposed to ‘stochastic’)—the apparent noise is 
solely driven by the high degree of non-linearity in the system (it is not noise at all, but 
‘deterministic chaos’).

Beautiful bifurcations
To see more clearly how chaos is arrived at, imagine starting at some arbitrary value 
(x0 " 0.3 say, the exact value does not matter) and iteratively calculating the population 
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Figure 6.3 Starting with x0 ! 0.4, the graphs show the values of xt iteratively calculated over mul-
tiple generations for different values of r. (a) When the parameter r is small (here r ! 2), we observe 
a simple rise towards equilibrium. (b) When the parameter r is increased (here r ! 3.5), we start to 
see cycles (here a four-point cycle is shown). (c) Increasing r even further (here r ! 3.9), we start to 
see chaotic dynamics with no underlying pattern.
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dynamics over 10,000 generations—very time-consuming to do ‘by hand’ but quick and 
easy on a computer. Now let us plot out the value of r on the x-axis, against the popula-
tion size(s) calculated over the fi nal 9,000 generations of the 10,000 generation iteration 
(Fig. 6.4). We ignore the fi rst 1,000 generations because they will include the ‘transient’ 
population sizes that inevitably arise from the particular starting value (x0). Once we 
have done this for one value of r, let us repeat the whole exercise for a slightly higher 
value of r until we have explored the full range of r. When r is low then the fi nal 9,000 
population sizes will be exactly the same as one another (the equilibrium) and so they 
will be represented by single point on the graph. As r increases, the equilibrium value 
changes (it increases in this case) but it is still a single value (the equilibrium) for a given 
value of r and so the 9,000 values are again represented by a single point. Nevertheless, 
as we increase r into the range at which two-point cycles arise, then the population 
sizes in the fi nal 9,000 generations will fl uctuate between two values and two points will 
start to appear on the graph (Fig. 6.4). You will see that there is a relationship between 
these two-point cycles and the former equilibrium, with the single line effectively 
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Figure 6.4 A bifurcation diagram, created here by plotting out the population sizes xt in the fi nal 
9,000 generations of a 10,000 generation iteration of the logistic equation. We omit the early values 
because they may be ‘transients’, not typical of the steady-state dynamics. For low values of r, only 
a single value of x is recorded (the equilibrium) for all 9,000 generations. As r increases, then two 
values are reported (a period-2 cycle), then four values are reported (a period-4 cycle): 8, 16, 32, and 
so on. The range of values of r with a particular period cycle gets progressively smaller, allowing a 
point of accumulation beyond which an infi nite number of points occur in the cycle and there is 
no pattern to the dynamics. Even within the chaotic regime, however, we can have ranges of r that 
give regular predictable cycles and these can be of odd numbers such as period 3.
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 ‘bifurcating’ into two. As r increases further, we see the amplitude of the oscillations 
increases (another consequence of the increase in lumpiness) until another bifurca-
tion takes place and a four-point cycle arises. After a smaller range of r then the period 
4 cycle bifurcates into a period 8, then (over an increasingly smaller range) period 16, 
period 32, 64, 128, and so on until a ‘point of accumulation’ is reached where we break 
out to an infi nite-point cycle. Beyond this point is the chaotic region, the period of the 
oscillation becomes infi nite, and so the dynamics never repeat themselves.

The beauty of bifurcations does not end here. May and Oster16 proposed that there 
was something quite predictable to the cascade of period doublings, noting that the 
ratio of the intervals between successive period doublings was approximately constant, 
and they did some mathematical work to characterize it. About the same time, Mitchell 
Feigenbaum took on the challenge of measuring these ratios directly. Using a (now-
ancient) Hewlett-Packard HP 65 programmable calculator, he observed that the ratio 
of the difference between the values at which successive period-doubling bifurcations 
arise rapidly approached a constant as the number of period doublings increased. This 
constant was eventually estimated as 4.6692 (to four decimal fi gures). The fact that 
the ratios are constant is surprising, but the really surprising thing that Feigenbaum 
discovered (and mathematicians subsequently helped formally understand) is that a 
whole range of dynamical equations that likewise have a chaotic region, such as the 
Ricker equation (xt!1 " xt exp[r (1#xt)]) used in fi sheries research, and the trigonomet-
ric mapping xt!1 " k sin (#xt) used in pure mathematics, all have precisely the same 
Feigenbaum constant of 4.6692. In other words, the ‘scaling ratio’ of the bifurcation 
does not depend on the specifi c equation. Indeed, Feigenbaum’s constant can be 
used to demonstrate that a model is capable of generating chaos even if it is not dir-
ectly observed.

So, chaos can be seen as dynamics with an infi nite number of points (never repeat-
ing) in a cycle—they are ‘aperiodic’. Yet peer into the chaotic regime past the point of 
accumulation and you see that for certain values of r we get regular 3-point cycles. These 
3-point cycles bifurcate into 6-point, then 12-point cycles each reaching its own point of 
accumulation. Elsewhere we have 5-point cycles bifurcating to 10- then 20-point cycles 
and so on. The bifurcation diagram has what we call fractal structure (more on this 
later), in that if we focus on smaller and smaller ranges of r and blow them up, we would 
see the same complex pattern dominated by chaos but with bifurcations once again 
breaking out. In fact, the fi rst scientifi c paper to use the word ‘chaos’ in this context 
was by Tien-Yien Li and Jim Yorke in 1975, and it highlighted the unusual occurrence of 
cycles with an odd number of points and explored the implications. The authors enti-
tled their paper ‘Period three implies chaos’.17 Apparently, colleagues had suggested 
using a rather more sober description, but by using a catchy term the scientists (and 
many that followed) had an appealing banner under which to sell their work.13 Using a 
colourful label for a scientifi c idea can be very helpful in attracting attention to it; think 
of ‘selfi sh genes’, ‘The Red Queen’, or ‘Gaia’. As Stephen Jay Gould18 argued ‘phenom-
ena without names . . . will probably not be recognized at all’.
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Defi ning chaos
One of the problems with using terms with broad appeal is that it can also attract criti-
cism for its lack of precision and scope for misunderstanding. ‘Chaos’ means different 
things to different people, so we have to be careful to use the term in a strict scien-
tifi c way. Probably, the easiest defi nition of chaos is that it is an ‘intrinsically driven’ 
absence of order—this ‘absence of order’ in turn may be interpreted as dynamics that 
lack any underlying pattern, so that you cannot predict what is going to happen in the 
long term. Yet many populations have dynamics that appear to lack any form of pat-
tern, and not all of it may be driven directly by internal feedbacks within the popula-
tion itself. For example, weather may add what we might think of as extrinsic ‘noise’ to 
the underlying dynamic (think of an extremely crackly radio reception, which crackles 
with noise obscuring the ‘signal’ you are trying to listen to), and so might simple meas-
urement ‘error’ (not mistakes per se, but chance sampling variation when attempting 
to estimate population size). So if chaos is ‘internally driven’ unpredictability, then we 
will need some good mathematical tools for distinguishing intrinsically driven disorder, 
from extrinsic ‘noise’. In other words, how can we tell whether the population dynam-
ics of fi sh in our pond (or antelopes on a savannah, say) are truly chaotic? As we will 
see, thankfully chaos has some rather different properties than a sequence of random 
numbers.

One popular way to ascertain whether a mathematical model is capable of exhibit-
ing chaos is to examine the nature of the non-linearity involved and examine how par-
ticular parameters might affect the extent of the non-linearity, just as we have done for 
the discrete-time logistic equation. Once characterized in this way, one can explore the 
impact of the non-linearity by identifying any potential bifurcation points, and the point 
of accumulation beyond which chaos lies. Bifurcation diagrams are usually straightfor-
ward to generate when there is one dynamical variable of interest (such as the popula-
tion size of one species), but similar techniques can be used with multiple dynamical 
variables (such as the population sizes of several species simultaneously). Of course, 
it is hard to do these types of manipulations with real observations of natural popula-
tions (although experiments using fl our beetles have met with certain success—as we 
describe later), so other techniques must be used to look for chaos in real data.

The butterfl y effect
There is one property of chaotic dynamics that we have not mentioned yet, but it is 
such an important and universal property of chaotic systems, that it has now become 
its key defi ning characteristic.19,20 Mathematical models fl uctuating chaotically always 
show extremely sensitive dependence on the initial conditions. This feature has been 
called the ‘butterfl y effect’ following a 1972 talk by meteorologist, and father of modern 
chaos theory, Edward Lorenz,21 who sadly died in early 2008 as were completing our 
book. Lorenz’s original insight came in the 1960s when he recognized and documented 
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the extreme sensitivity to initial conditions exhibited by a simple non-linear model of 
fl uid convection in the atmosphere.21 Thus, the story goes that if weather systems were 
chaotic then an almost negligible change in local wind speed in South America, such as 
that created by a wing fl ap of a butterfl y, may ultimately mean the difference between 
having a hurricane in the northern hemisphere and not having one. Of course, this sen-
sitivity has nothing to do with butterfl ies per se, and butterfl ies do not directly trigger 
anything—it is simply that with chaos, a small difference will always cascade to produce 
uncorrelated futures (not necessarily bad ones either). The nursery rhyme ‘For the want 
of a nail, the shoe was lost; for the want of a shoe the horse was lost . . .’ captures some 
of this contingency.

Naturally, the butterfl y effect could be called something else, such as the ‘seagull 
effect’ (Lorenz’s original metaphor). However, the butterfl y neatly captures the shape 
of Lorenz’s strange attractor (Fig. 6.5, see later for a full explanation) and, bizarrely, Ray 
Bradbury’s 1952 short story A Sound of Thunder also uses a butterfl y to depict the nature 
of extreme sensitivity. In this story, a prehistoric butterfl y is crushed underfoot by a 
time-traveller and this perturbation to the world is suffi cient to change the outcome 
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of a presidential election many years later. Apparently, Al Gore hired a mathematician 
to teach him chaos theory after failing to gain the U.S. presidency in 1988.13 In almost 
poetic irony, given Bradbury’s short story, it appears that another butterfl y—this time 
the infamous butterfl y ballot paper in Florida—may have cost Gore the 2000 election.

Mathematicians have characterized this extreme sensitivity to initial conditions, 
noting that if a system has chaotic dynamics, then the difference between the trajec-
tories of two populations that have slightly different initial conditions grows expo-
nentially (geometrically) until this difference is essentially as large as the variation in 
either trajectory. At this point, the two population trajectories have no relationship 
to one another, although they may have started out at almost the same densities. The 
rate at which trajectories from similar, but not identical, starting conditions diverge 
from one another can be characterized by a quantity (or a series of quantities) known 
as a ‘Lyapunov exponent(s)’ (spelt in various ways) after the Russian mathematician, 
Aleksandr Lyapunov. A positive Lyapunov value means that the trajectories do indeed 
diverge exponentially from one another. In effect, due to their sensitivity to initial con-
ditions, chaotic systems are ‘noise amplifi ers’ while non-chaotic systems with deter-
ministic rules tend to be ‘noise muffl ers’.22

Let us stop to think what this means. If natural populations (or the weather, or atmos-
pheric carbon dioxide levels, or whatever dynamics we are interested in) did fl uctuate 
chaotically, then we could give up on long-term forecasting. We cannot measure the 
‘start conditions’ with infi nite precision (imagine trying to record all aspects of the wea-
ther simultaneously across the entire globe—or even one small part of it—with com-
plete accuracy), so even if we had the best mathematical model one could ever produce, 
then the difference between what we thought would happen and what will happen will 
diverge exponentially. This is just one ‘casualty of chaos’ and we will return to the full 
casualty list later, as it helps to demonstrate the great potential signifi cance of chaos.

Fatal attraction
Another important way of determining whether a particular mathematical model or 
ecological data set exhibits chaos is to present the dynamics in a rather different way, 
not as population size (or whatever variable you are interested in, such as temperature) 
against time, but as population sizes against one another. This is most easily seen when 
there are two or more variables such as densities of a predator and a prey species, or 
densities of three competing species. Instead of plotting the number of predators, and 
the number of prey separately against time, we can plot the number of predators at 
given times against the number of prey at the same times directly, and effectively ignore 
time. The technical term for displaying dynamics in this way is to show the results in 
‘phase space’. If predators and prey quickly reach an equilibrium, then this equilib-
rium will appear as a single point on a graph of predators vs prey, and the dynamics 
will stay at that point for all the remaining time. In effect, the dynamics will appear as 
if predators and prey get ‘sucked in’ to an equilibrium point in phase space, and this 
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 equilibrium point is therefore known as an ‘attractor’. Other forms of attractor are also 
possible. For example, if the number of predators goes up when there are plenty of prey 
to eat, but the number of prey goes down when there are many predators, then preda-
tors and prey might enter into regular and predictable cycles. If we plot these cycles not 
as predator vs time, and prey vs time, but as predators vs prey, then again we would see 
an attractor, but this attractor would be a regular orbit (a closed loop), with predators 
and prey continually circling around it.

Now let us consider what chaos would look like in phase space. Chaos almost by def-
inition must be bounded—while lacking order, the variable(s) in question should fall 
in a fi nite range between extinction and unfettered growth. Yet at the same time, the 
lack of order means that the same pattern is never repeated (if it did so, then with no 
built-in elements of chance, the dynamics would simply have to repeat itself). Imagine, 
therefore, the long-term dynamics of a population as an infi nitely long ball of wool. 
How can you get an infi nitely long ball of wool into a fi nite space without ever cross-
ing over (repeating) itself? The answer is by having peculiar properties of folding and 
self- similarity that we alluded to earlier when discussing bifurcation diagrams. In other 
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words, our ‘attractor’ has to be a strange geometrical object, and for this reason cha-
otic attractors are known as ‘strange attractors’. Figure 6.5 (showing the relationship 
between dynamical variables in Edward Lorenz’s metrological model21) and Fig. 6.6 
(showing the relationship between predator and prey density in Michael E. Gilpin’s 
three-species ecological model23) each depict strange attractors. They look weird, and 
indeed they are. Their complex beauty has not only attracted biologists, but also artists, 
art historians, and poets.24 Choose points on two separate lines and you will see that 
the trajectories rapidly diverge from one another—the stretching and folding effect-
ively pulls them apart—refl ecting the high sensitivity to initial conditions. One quanti-
tative measure of strangeness is a measure of their self-similarity at different scales, an 
attribute that is measured by their ‘fractal dimension’. It is primarily for this reason that 
chaos is associated with the world of fractals, although we will not be exploring fractals 
any further in this chapter.

What chaos is, and is not
We now get to a workable defi nition of chaos and clear up a few misconceptions. 
A recent defi nition was proposed by Cushing and colleagues in their book Chaos in 
Ecology.25 In their defi nition, which we will use ourselves, they combine elements of 
disorder, ‘boundedness’ and sensitivity to initial conditions all in one: ‘a trajectory is 
chaotic if it is bounded in magnitude, is neither periodic nor approaches a periodic 
state, and is sensitive to initial conditions’. So, it is the sensitivity to initial conditions 
that provides a key clue to chaotic dynamics.

The fi rst potential misconception is easily cleared up by pointing out that chaos is not 
only a property of mathematical models expressed in terms of difference equations. We 
introduced chaos through a simple difference equation, but models based on continu-
ous changes can also exhibit chaos—indeed the two strange attractors in Figs. 6.5 and 
6.6 were generated by models with continuous rates of change involving three dynam-
ical variables. It turns out that chaos only occurs in simple differential equation sys-
tems involving three or more variables,20 but the possibilities for chaos get richer as we 
increase the number of variables.26 As mathematician Mark Kot27 noted, ‘As soon as you 
move to three or more species, there are hundreds of ways to get chaos’. Second, while 
early researchers were taken aback by the complex dynamics predicted by simple sets 
of equations with no elements of chance involved (so-called deterministic equations), 
and many investigators continue to emphasize chaos as a primarily deterministic phe-
nomenon, work has also been done to understand the role of small random elements 
(noise) in these chaotic systems.22 For example, small amounts of noise added to the 
dynamic can make something of a mess of bifurcation diagrams we described earlier, 
but the underlying bifurcations are still evident and the extreme sensitivity to initial 
conditions remains.28 Despite this, depending on one’s specifi c defi nitions, noise may 
have the potential to turn non-chaotic systems intrinsically chaotic,29 thereby creating 
much more unpredictability than one would expect from the random elements alone. 
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The role of noise is currently under debate30–32 but it is clear that noise may do much 
more than provide a fuzzy cloud around a deterministic skeleton. We leave further con-
sideration of the infl uence of such ‘stochasticities’, particularly in connection with cyc-
ling populations, until later in this chapter.

The casualties of chaos
Now that we know what chaos is, we briefl y ask what are its implications if it turns out 
that many populations do indeed exhibit chaotic dynamics. In other words, is it worth 
fi nding out whether natural populations are chaotic? We have already pointed to sev-
eral potential benefi ts of this branch of research. In particular, if ecologists observe a 
fl uctuating population, it is only natural to wonder whether the fl uctuations are caused 
by external environmental events such as temperature and rainfall, or whether they are 
caused by internal feedbacks within the population itself. By carefully analysing the 
data and looking for the signatures of chaos, we can hope to fi nd out.

In some ways, just asking the question moves the debate forward. For example, 
for several decades in the past century there was a heated debate over whether nat-
ural populations were regulated by internal density-dependent mechanisms (such 
as competition for resources) or external density-independent mechanisms (such as 
periods of bad weather). At fi rst glance, one might assume (as many population biolo-
gists did) that density-dependent mechanisms would tend to produce stable dynamics, 
while density-independent mechanisms would tend to produce erratic fl uctuations. 
Yet, armed with an understanding of chaos, all this is turned on its head—too strong 
a density- dependent feedback, and one could end up with highly erratic fl uctuations. 
Not only does this suggest that standard tests for density dependence in time-series 
data are invalid for chaotic systems, but it also means that just because you see unusual 
fl uctuations does not mean that there is no density-dependence operating. This has 
implications for global ecology, not just population dynamics—for example, asking 
questions about the potential regulation of carbon dioxide or oxygen on Earth over 
 geological time.

Perhaps the single most important reason why it is helpful to know whether popula-
tions are chaotic relates to the sensitivity with respect to initial conditions. Spontaneous, 
unpredictable events are a central element of quantum theory, but the thought that nat-
ural populations could also show extreme unpredictability due to the sensitivity of their 
dynamics must have come as a shock to many ecologists. As already noted, if a high 
proportion of natural populations fl uctuated chaotically due to intrinsic non- linear 
feedbacks, then we could hang on to very short-term forecasting, but kiss goodbye to 
the goal of long-term forecasting (this appears to be the case for local weather forecast-
ing). We might be able to say statistically what the mean and likely range of population 
sizes were (in the same way that we can predict climate into the future, even if local 
weather forecasts are much more constrained), but beyond that we can simply give up. 
Of course most of us take long-term forecasts of any complex system, be it the weather, 
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the economy, or a natural population, with a pinch of salt, but if they were chaotic, 
we know that our predictive power has built-in limitations, and we might usefully be 
able to quantify these limitations. For example, if global weather patterns are chaotic 
then we might be able to describe how the accuracy of predictions might be expected to 
decay over longer and longer prediction intervals.

Is mother nature a strange attractor?
Therefore, the crunch question is: do natural populations fl uctuate chaotically? To 
answer this, we must quantitatively examine real data on the estimated size of some 
specifi ed population over many generations. Early approaches to address the ques-
tion involved assuming that a particular mathematical model (which was capable of 
exhibiting chaos under some conditions) was an accurate descriptor of the underlying 
dynamics. The model was then fi tted to the observational data and the parameters 
were estimated (such as the parameter r in the discrete-time logistic). If the estimated 
parameter values were such that they would generate chaotic dynamics in the model, 
then one might be tempted to believe that the dynamics being investigated were also 
 chaotic.

Population biologist Mike Hassell and colleagues33 took just the above approach in 
1976 when they fi tted a general discrete-time population model involving three param-
eters (α, λ, and β) to 28 different data sets on the dynamics of insects (24 from fi eld situ-
ations, and four from laboratory studies). It turns out that in their particular model, not 
one but two parameters—λ (growth rate) and β (a competition coeffi cient)—infl uence 
the degree of non-linearity, and that only high combinations of both λ and β would 
generate conditions suffi cient to produce chaos. After fi tting the model, the authors 
cautiously concluded that the vast majority of insect data sets had parameter combin-
ations that would put the dynamics into a simple equilibrium, and only one case—the 
classical laboratory study of blowfl ies conducted by Nicholson34—had parameter com-
binations that would put the dynamics into the chaotic regime. However, as the authors 
pointed out, even this case may have simply arisen as a laboratory artefact—the fl ies 
were not subject to many natural mortality factors such as parasitic wasps, which may 
have exaggerated the non-linear qualities of the dynamics.

Of course, the entire model-fi tting approach is fraught with problems,35,36 not the 
least of which is that one must be extremely confi dent that the model you have fi tted 
does indeed represent the underlying dynamics. Another related objection is that the 
dynamics of natural populations are often dependent on the infl uence of many other 
species, so fi tting such a simple model is inappropriate—although one might argue 
(with a degree of mathematical justifi cation) that the fi tted model could be considered 
a representation of the outcome of all relevant species interactions.37 Nevertheless, 
Hassell’s approach remained an obvious and sensible way to treat the data, especially 
since it helped readers see the underlying chaos (still a novel concept at that time) in 
the mathematical model, before the model was fi tted to the data.
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Thomas and colleagues38 followed suit in 1980, this time fi tting a ‘θ-Ricker’ model 
capable of exhibiting chaos, to the dynamics of 27 species of fruit fl y in the laboratory. 
They expected the functions to be highly folded because they maintained very high 
population growth rates by changing the fl ies’ food regularly. Somewhat surprisingly 
however, when they came to analyse their data they found that the estimated param-
eters were not suffi cient to put any of the 27 species into the chaotic regime. A similar 
result was obtained when Mueller and Ayala39 examined the dynamics of 25 genetic-
ally distinct populations of the fruit fl y Drosophila melanogaster and found no evidence 
that the estimated population parameters were suffi ciently large to push the dynamic 
into the chaotic regime. Collectively these studies, on an impressively large number of 
species populations, were suffi cient to convince many ecologists that chaos was relat-
ively unimportant in natural populations, and therefore simply a ‘plaything’ for theo-
rists. More recent studies applying much the same models, such as the Hassell model 
to the population dynamics of a number of species of weeds, have likewise come to the 
conclusion that the dynamics were not chaotic.40

Nevertheless it has not all been one-way traffi c. In the mid-1980s, Schaffer and Kot41 
began looking at the dynamics of measles cases in New York City and Baltimore, reported 
monthly from 1928 to 1963. Before the widespread employment of vaccines, measles epi-
demics arose almost every year in large American and European cities, but major peaks 
were unpredictable, occurring every second or third year in New York and less frequently 
in Baltimore. The combination of seasonal ‘forcing’ (contact rates among school chil-
dren are higher in the winter when schools are in session, compared to the summer) and 
feedbacks via gaining immunity made childhood infections very plausible candidates for 
chaotic dynamics. Rather than fi tting a model, the authors attempted to reconstruct the 
attractor and test whether it had suffi cient strangeness (stretching and folding) to qualify 
as a strange attractor. Of course with only a single dynamical variable, it is hard to produce 
a strange attractor directly, but thanks to a neat solution proposed by the physicist Floris 
Takens,36 it is possible to plot the number of measles cases at time t against the number 
of cases at time t!τ and the number of cases against time t ! 2τ with τ a variable time 
difference and thereby (assuming you have enough data) build up an equivalent picture 
of the underlying dynamic. Although chance may have played some role in generating 
the measles unpredictability (e.g. some cases will go unreported, and reports will be lost), 
by reconstructing and analysing the attractor that the epidemics represented (followed 
up by an estimate of the Lyapunov exponent) the authors argued that there was a strong 
deterministic component to this unpredictability (chaos) in both the New York and 
Baltimore data sets. More recent analyses have generally supported these  conclusions,42 
including an analysis based on time-series analysis.43 However, doubts still remain,44 
most notably because underlying factors such as birth rates have changed over time, 
and because the amount of seasonal forcing required to generate chaos in mathematical 
models of measles epidemics is considerably more than actually observed.45

The year before (in 1984) Schaffer46 had analysed the oscillatory dynamics of the 
Canadian lynx as recorded by the numbers of skins shipped yearly by the Hudson’s 
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Bay Company over the 1800s and 1900s—these data have been a classic of ecology text-
books since the 1920s.47,48 As the author himself has noted, these data made a somewhat 
less convincing case, but they were again suggestive of chaotic signal (and indeed more 
recent analyses provide additional support for this49).

By the mid-1980s, Schaffer was beginning to see suffi cient signs of chaos, that he 
issued (with Kot) a call to arms, arguing that ecologists were ignoring the very real pos-
sibility that chaos could be an important component of ecological systems and likened 
chaos to ‘the coals that Newcastle forgot’50 (the implication being that this rich vein of 
science was under the noses of ecologists and they did not realize its potential). With 
titles like that, coupled with the bestseller (and all-round wonderful read) Chaos by 
James Gleick,51 scientists were well and truly waking up to the possibility of chaos.

In 1991, Tilman and Wedin provided experimental fi eld evidence of the signature of 
chaos in dynamics of the perennial grass, Agrostis scabra, grown at two different ini-
tial densities on 10 different soil mixtures. For progressively richer soils, the dynamics 
evaluated over 5 years tended to exhibit higher amplitude oscillations with the richest 
(highest nitrogen) soil exhibiting dynamics the authors described as chaotic. Of course, 
with only a 5-year data set this interpretation is at best speculative (once again model-
fi tting methods and parameter estimation were used), but the inherent time scale of 
the annual dynamics clearly poses experimental challenges. One potential source for 
the signifi cant non-linearity was the accumulation of leaf litter. Thus, in high-density 
years the accumulation of leaf litter (dead plant material at the end of the growing sea-
son) may inhibit growth of the following year. More recent work on the dynamics of 
another plant species, an annual greenhouse weed Cardamine pensylvanica likewise 
found  evidence of oscillatory dynamics over 15 years, but in this instance found no evi-
dence of chaos.52

Chaos in small mammals?
The regular oscillations of small mammal populations such as voles and lemmings have 
given population ecologists plenty of data (they are often pests of forestry plantations 
and leave signs—such as grass clippings and bark scrapings—which can be used to esti-
mate their densities).53 No, lemmings do not jump off cliffs into the sea on a ‘suicide 
drive’ as Disney’s 1958 documentary White Wilderness would have us believe (indeed, 
the shot of lemmings jumping was entirely contrived—not only were they pushed, but 
also the sequence was fi lmed in Alberta, Canada, which has neither lemmings nor sea). 
However, many populations of small mammals exhibit remarkable high- amplitude 
3–5 year oscillations in population size. These dynamics appear rather different in form 
in different regions. In particular, in southern Fennoscandia (including the Scandinavian 
Peninsula, Finland, and Denmark) and central Europe, populations seem to exhibit far 
lower amplitude fl uctuations than in northern Fennoscandia. A possible reason for this 
is that the density of generalist predators is low in the north, and here specialist preda-
tors, notably the weasel, drive the dynamics.54
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It has been proposed that the shift from south to north in small mammal dynamics 
is not from equilibrium to an entirely regular cycle, but rather from stability to chaos. 
Indeed, Hanski and colleagues55 analysed data on the population sizes of Microtus 
voles in western Finland and, on the basis of time-series analysis that revealed positive 
Lyapunov exponents, the authors argued that the observed dynamics in these popula-
tions were chaotic (with the exception of the most southerly population), albeit with a 
signifi cant periodic component. In essence, chaos may be superimposed on top of a 
more regular signal. They supported their interpretation with a predator–prey model 
involving seasonality that readily generates the type of chaos they had revealed in the 
data. Nevertheless, it is fair to say that not all researchers are fully convinced, and there 
has been considerable debate over the issue, centring on how the Lypanunov exponent 
(and its likely range) is best estimated in systems involving noise.56–58 Of course, added 
noise is inevitable if you are trying to evaluate vole density across a large part of Finland 
using indirect methods of estimation.

Chaos in the laboratory
Perhaps the most ambitious set of experiments to investigate chaos was conducted in 
the laboratory on a species of fl our beetle Tribolium castaneum.59,60 Tribolium is canni-
balistic, with older individuals eating smaller ones, so if the population is at high dens-
ity then many small larvae will get eaten by the older individuals, reducing recruitment 
into the next generation. After modelling Tribolium dynamics using an age-structured 
population consisting of larvae, pupae, and adults, the authors concluded that the can-
nibalistic feedback was capable of generating chaos, as well as unusual dynamics that 
never quite repeats itself but does not show the sensitivity to initial conditions (‘quasi-
periodicity’). Having a theoretical model to play with is a helpful way to judge when 
and where interesting things might happen, and understand why. More importantly, 
the authors combined this modelling approach with a replicated experimental study 
in which they artifi cially manipulated the adult mortality rate59 and recruitment rates 
of pupae to adult stage,60 and in each case they found good evidence of the predicted 
shifts in the dynamics (from stable points, to cycles and quasi-periodicity or stable 
points through a range of dynamical behaviours ending with chaos). One might argue 
that by manipulating the ecology, the authors have forced the system to match the 
model rather than the other way around, but this study remains convincing evidence 
that populations are at least capable of exhibiting chaos.

Even more recently, Becks and colleagues61 have manipulated the dynamics of a 
bacteria-eating ciliate predator and two species of bacteria (rod-shaped and coccus) in 
a chemostat: a rearing facility ensuring approximately constant environmental condi-
tions. By experimentally manipulating the rate of delivery of the organic food source 
for the bacteria to the chemostat, the authors found that they could change the under-
lying dynamic between equilibria, stable cycles, and chaos (based on Lyapunov expo-
nents). Precisely why chaos was generated is unclear, but the system has  parallels to 
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Gilpin’s model23 of a one predator and two prey system. Moreover, this is the fi rst case 
we know of in which chaos has been demonstrated in a microbial system. A second 
related example followed in 2008, and involved culturing a functioning planktonic food 
web isolated from the Baltic Sea under standardized laboratory conditions.62 Despite 
constant external conditions, this microscopic community, which consisted of bac-
teria, several phytoplankton species, herbivorous and predatory zooplankton, and 
detritivores, showed marked fl uctuations in abundance over the 2,319-day experimen-
tal period and yet the populations still persisted intact. Moreover, the dynamics had 
all the hallmarks of chaos, including positive Lyapunov exponents for each species.62 
Collectively, these studies indicate that chaotic dynamics can and do arise in complex 
microbial communities.

The bottom line
Our review of the presence or absence of chaos in populations is not intended to be 
exhaustive. For example, there are scattered accounts of tests for chaos in the dynam-
ics of bobwhite quail63 (no evidence), water fl eas64 (no evidence), aphids65,66 (no evi-
dence), and moths (no evidence)65,66 and no doubt many more. Interestingly, in a 
recent review of chaos in real data sets,67 several of the data sets (including blowfl ies1 
and fl our moths68) had dynamics ‘on the edge of chaos’; that is, oscillations that, with a 
little more feedback, would have been chaotic. To this we can add a recent analysis of 
certain populations of Fennoscandian voles.69 Whether this condition is common, or 
whether it is an artefact of the underlying statistical methodology, is currently unclear. 
However, it is now known70 that noise superimposed on a regular periodic cycle can 
generate dynamics with no change in period but a change in amplitude—these quasi-
periodic dynamics are just the sort of dynamics that give rise to zero Lyapunov expo-
nents and dynamics at the ‘edge of chaos’. So, perhaps some of these populations at the 
edge of chaos are simply ones that have an underlying tendency to show regular cycles 
in abundance, while being infl uenced by external noise.

Let us return to the original question we set ourselves. Ecologists have long realized 
that the systems that they are dealing with are non-linear, but are they suffi ciently non-
linear to drive chaos? In 1993, an excellent review of chaos in ecology was published using 
the subtitle ‘is mother nature a strange attractor?’20—one we have borrowed for one of 
our own section headings. The authors knowingly avoided answering their own ques-
tion directly, preferring instead to suggest that ‘chaos is quite likely, but much more work 
is needed to obtain a fuller answer to the question’. Now 15 years later, ecologists are 
expressing doubts. More recent opinions have varied from ‘the jury is still out’67 to ‘chaos 
is rare’.71 In 1999, science journalist Carl Zimmer72 wrote about ‘life after chaos’. Our own 
survey leads us to conclude that there is very little good evidence for chaos in natural 
populations. We have to be cautious, however, because part of the problem may be that 
ecological population data are by their nature relatively short term and noisy, making 
unequivocal proof of the existence of chaos challenging at best. Perhaps this is one reason 
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why ecologists have recently been more successful in detecting chaos in microbial sys-
tems which can be monitored for many more generations. The shortage of good data sets 
for multicellular organisms has occasionally led to controversy. For example, ecologists 
have sometimes ended up arguing over the same data sets: as Schaffer has quipped (no 
slur seems intended): ‘novel claims conjoined with a paucity of data inevitably attract the 
attention of statistics, much in the manner that offal attracts fl ies’.37

We cannot rule out the possibility that mother nature is, in general, a strange attractor, 
but we have to say that the case is looking increasingly shaky, at least for multicellular 
organisms. If ecological systems are not chaotic then, given that it is a widespread prop-
erty of many population models, we need to ask the reverse question posed early in the 
debate by Berryman and Millstein73 in 1989—‘if not, why not?’

If not, why not?
Jeff Goldblum, playing that self-confi dent ‘chaotician’ in Jurrasic Park who eventually 
met the end we could all see coming (‘When you gotta go, you gotta go’), remarked 
before his demise ‘Life will fi nd a way’. Perhaps natural populations are not chaotic 
because natural selection somehow fi nds a way of pushing population parameters 
towards  levels where they would not exhibit chaotic properties. Both Thomas and col-
leagues38 and Berryman and Millstein73 thought this might be the case, noting that in 
the chaotic region populations tend to fl uctuate wildly yet spend a high proportion of 
their time at relatively low densities where extinctions are more likely to happen. Their 
argument was explicitly ‘group selectionist’: ‘it seems reasonable that natural selection 
might favor parameter values that minimize the likelihood of extinction and, conse-
quently, chaotic dynamics’.73 However, there are several problems with this argument. 
First, not all chaotic dynamics suffer from a high probability of extinction—some cha-
otic dynamics are tightly bound well away from zero, and chaos can in some cases 
reduce the likelihood of species extinctions.74 So, despite the biblical impression that 
chaos is all about doom and destruction, it is not necessarily the case in the ecological 
sense of the word. Second, it ignores the problem of individual selection for cheats that 
favour their own reproductive success, even if it ultimately leads to the demise of the 
group. Chaos is about long-term dynamical behaviour, but natural selection is driven 
by what genetic variants perform best right now. There are cases where group selec-
tion effectively overpowers individual selection, but we generally need rather extreme 
assumptions38 (see also Chapters 1 and 2).

Perhaps natural selection on individuals, rather than groups, can favour non-chaotic 
dynamics. The role of natural selection in infl uencing population behaviour, even in 
short-term laboratory experiments, is now widely recognized. For example, Yoshida 
and colleagues75 recently successfully produced predator–prey cycles in a laboratory 
microcosm involving a rotifer feeding on a green alga. However, the cycle periods 
were far longer than predicted, and the observed predator and prey cycles were almost 
exactly out of phase, which is not what one would anticipate. Only by accounting for 
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(and testing for) the possibility of on-going natural selection in their system—in which 
rotifers effectively traded competitive ability for the ability to defend against predation 
when predation rates were high—were the authors able to reconcile their experimental 
and theoretical results. Thus, it seems the prey population was actively evolving at the 
same time it was undergoing fl uctuations in density.

Alexander Nicholson’s ‘blowfl ies’ represent one of the most celebrated and analysed 
data sets in the history of ecology34,76 (see also Fig. 6.1). Seeking to understand how and 
why populations fl uctuate led him to begin an intensive series of experiments in the 
1950s with caged Australian sheep-blowfl ies. Maintained in the laboratory for several 
hundred days, the blowfl ies exhibited characteristically ‘double-peaked’ oscillatory 
dynamics. However, in some of his longer-term experiments (lasting over 700 days), the 
dynamics became rather irregular after about 400 days, and at the same time the period 
of their oscillations also dramatically halved (to a mean of approximately 38 days). 
Nicholson himself recognized these patterns in his data and proposed that natural 
selection was acting in the course of his experiment. George Oster77 went further, pro-
posing that natural selection had a destabilizing infl uence, carrying population param-
eters into the chaotic regime (thereby neatly explaining Hassell and colleagues33 earlier 
observations—see earlier). Yet a more detailed analysis has subsequently revealed the 
opposite78—over the course of the experiment it appears as if there was a reduction in 
the maximum possible fecundity of adult females, moving the dynamics from unsta-
ble to more stable dynamics, tracking the regular addition of protein food supply. So, 
in the case of Nicholson’s blowfl ies we may have evolution towards stable dynamics. 
However, we would do well to remember that selection pressures in a jar in a laboratory 
are likely to be quite different from those found in the wild.

Over the years, a general consensus has been building (with a few notable excep-
tions79) that there may be selection on individuals that happens to take their populations 
away from the realm of chaos. For example, whether a population will evolve towards 
stability or towards chaos appears model-dependent, but a fl uctuating population with 
constant carrying capacity (such as that represented via a logistic) will tend to experi-
ence selection that results in the population evolving towards population stability (in 
effect, parents go for offspring quality rather than quantity). Likewise, a suite of general 
population models,80 models of competition,81 and those involving stage structure82 
have all been reported to involve natural selection that indirectly promotes population 
stability. Experimental evolution in fruit fl y populations had earlier suggested little or 
no evolution of parameters affecting population stability,83 but a recent study under 
rather different conditions did indicate that populations evolve towards stability84 (as 
a consequence of individuals reducing their fecundity to develop more rapidly). Once 
again, we see a close interrelationship between evolution and ecology, here with nat-
ural selection generating demographic parameters that happen to facilitate population 
stability.

Another set of reasons why populations may fail to exhibit chaos while mathem-
atical models readily exhibit it may have something to do with the particular type of 
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 mathematical models that have been explored. In a recent review, Scheuring85 made 
the case that several biologically relevant details, such as sexual reproduction, popu-
lation structure, and dispersal tend to be overlooked in simple population dynamical 
models, yet incorporation of these details into mathematical models generally favour 
dynamical stability. For example, certain population models that include sexual repro-
duction show a reduced propensity to exhibit chaos.86 Similarly, when you allow small 
amounts of dispersal between several otherwise chaotically fl uctuating populations, 
the resulting dynamic becomes more stable.87–89 Of course, it is very diffi cult to be gen-
eral, but reversing the usual statement about chaos, it seems that complicated models 
with realistic features can generate simple dynamics.

Conclusion
The discovery that simple non-linear relationships, common in ecological systems, 
could generate extremely complicated dynamics was nothing short of a revelation. The 
associated fi nding that these complicated dynamics exhibited extreme sensitivity to ini-
tial conditions carries with it implications for all of ecology. In the intervening three dec-
ades since these discoveries were made, ecologists have worked hard to fi nd evidence 
for this chaos in natural populations. Chaos has been formally defi ned, and methods 
have been developed to help test for it in the short and noisy data sets that ecologists 
are forced to deal with. We now know that populations can indeed be manipulated to 
generate all the features of chaos seen in mathematical models, and there is reasonable 
evidence of chaos arising in certain cases, such as childhood measles and some micro-
bial systems. So, chaos can occur. Nevertheless, the majority of attempts to fi nd chaos 
in natural populations have either drawn a blank or remain controversial.

Early in the ecological study of chaos, Schaffer and Kot50 likened chaos to ‘the coals 
that Newcastle forgot’. With painful irony, their paper was published shortly after 
the UK national miners’ strike and all of the coal pits in the Newcastle area are now 
closed (as from 2007, only six pits remain in operation in the entire United Kingdom). 
Surveying the literature here leads one to suggest that many of the richest seams (to 
stretch the coal metaphor) of available ecological data have now also been explored, 
and few have provided much return. There may be good reasons why natural popula-
tions do not exhibit chaos, but only time will tell whether chaos is indeed rare.

Given the wonderful diversity of the natural world and knowledge that many sys-
tems have the propensity to exhibit chaos, perhaps a better question to have asked is 
‘when and how often are natural systems chaotic?’ rather than ‘is this system chaotic?’. 
We have seen already that voles can exhibit very different dynamics in different popu-
lations, and both the blowfl y and the lynx data are suggestive of a marked change in 
dynamics at some point in their history. Likewise, fl our beetles can exhibit a range of 
different dynamics dependent on underlying experimental conditions. So, it is per-
haps naive to characterize a population as ‘non-chaotic’ or ‘chaotic’, because dynam-
ics can change according to the prevailing conditions. Human activities could yet turn 
non-chaotic dynamics into chaotic dynamics by increasing the degree of non-linearity 
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involved—as has been suggested for some fi sheries.90 This may particularly be the case 
for insect pests, such as the migratory locust mentioned in our opening paragraph, if 
drastic control measures are only implemented if pest density reaches a high level.73

Chaos theory continues to grow and develop in a variety of scientifi c fi elds where it 
has found wide application. As May noted in one of his early seminal papers,9 ‘Not only 
in research, but also in the everyday world of politics and economics, we would all be 
better off if more people realized that simple non-linear systems do not necessarily pos-
sess simple dynamic properties’.

Ecologists are now much more aware of the subtle effects of non-linearities, and appre-
ciate the wide variety of dynamical behaviours they can generate. Yet the truly surprising 
thing in all this is how long it took scientists to discover chaos. As James Yorke, one of the 
early pioneers, has recently said ‘I continue to wonder, if nearly all scientists missed this per-
vasive phenomenon, what other obvious phenomenon might we all be missing now?’.91

Named after the mathematician Benoit Mandelbrot, the Mandelbrot set has become one of the 
icons of chaos theory.  This rather complex object is generated by a relatively simple set of rules 
and has self-similarity at different scales (hence fractal dimensions), such that zooming in one 
sees the same patterns at an increasingly fi ner scale. Due to their aesthetic appeal, fractals have 
long attracted the interest of graphic designers and artists. Image by TNS.


