Introduction to Point Pattern Analysis
with Ripley’s L and the O-ring statistic
using the Programita software
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with an collection of examples for point pattern analysis
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1. Programita

1.1. Abstract

The Programita software allows you to perform univariate and bivariate point-
pattern analysis with Ripley's L-function and the O-ring statistic. Programita
contains standard and non-standard procedures for most practical applications.
Procedures for non-standard situations include the possibility to perform point-
pattern analyses for arbitrarily shaped study regions and Programita offers a
range of non-standard null models such as heterogeneous Poisson null models or
cluster null models.

The calculation of the L-function and the O-ring statistic is done within a grid-
based framework which greatly simplifies the computation of L and O for non-
standard situations. Both measure are based on the distance between all pairs of
points of a pattern and count the number of points within (or at) a certain dis-
tance, r, of each point, with r taking a range of scales. While the L-function is
basically related to the mean number of neighbours in a circle of radius r, the O-
ring statistic is related to the mean number of neighbours in an annulus of radius
r.

Programita tests for significance of a given null model by comparing the ob-
served data with Monte Carlo envelopes from multiple simulations of the null
model. Programita allows for a variety of specific null models for univariate and
bivariate point-patterns. The procedures used by Programita are described in
detail in Wiegand and Moloney 2004.

This document is primarily a manual to the use of Programita with extensive
examples, but it provides also an introduction to point-pattern analysis.

1.2. Before starting Programita

1.2.1. Hardware requirements

Programita is a free unsupported software, developed in Borland Delphi4 under
a WindowsXP environment. Programita is executable under 32-bit operating
systems such as Windows98, Windows 2000, Windows XP or WindowsNT.

Running Programita requires little hard drive space. For example, for grid sizes
<200 %200 cells Programita and temporally created files occupy < 10M. How-
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ever, analysis of larger grid sizes may be slow for small working memory and
low computer speed.

1.2.2. Terms of use and copyright agreement

The Programita software is produced by Thorsten Wiegand in his spare time. He
is affiliated at the Dept. Ecological Modelling, UFZ Centre for Environmental
Research Leipzig-Halle. Programita is intended to foster analysis of point pat-
terns in ecology by providing ecologists a tool that contains null models and pro-
cedures not supported by most statistical packages, but which are essential for a
throughout analysis of point-patterns. The Programita software is not a not
commercial venture and may be downloaded and used free of charge for pur-
poses of scientific research and teaching. Any commercial application of the
program requires the previous permission by the author. Publications must ac-
knowledge use of the Programita and cite Wiegand and Moloney (2004) which
describes the implementation and the procedures used by Programita.

1.2.3. Installation

There is no setup procedure; installation of programita requires only the extrac-
tion of all files from the zip file Progamita.zip. Make sure that you also access
the PDF (ManualProgramita2004b.pdf) and HTM versions (Manu-
alHTM2004b.zip) of the user manual of Programita. Place the files into a direc-
tory of your choice; extracting the zip file will place all files into the sub-
directory Programita. Note that you must place all files in the same directory; for
simplicity Programita does not use a path variable. The zip-file contains the fol-
lowing files and file types:

programita2004b.exe  the executable of Programita, version 8 of March 2004

*.asc files example data file in ArcView raster format

* dat files example data files and temporary files

* fit files file with results of the fit of a cluster null model

*.res files results and settings files

*.shp files files used for defining an irregularly shaped study re-
gion

The manual of Programita (ManualProgramita2004b.pdf) and a HTM version
of the manual (ManualHTM2004bzip) are provided separately. You can use
the HTM version as help because it contains many textmarks and internal links
for easy navigation through the document.
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1.2.4.Screen size

Programita was designed for a screen of 1024 x 768 pixels, but it can be run as
well using a 800 x 600 screen. If you execute Programita in the 1024 x 768
pixel mode, it must look like the segment shown in Figure 1. Sometimes win-
dows within Programita are truncated and one cannot see all of some buttons or
headers. In this case it is as if the window is too small to handle them. To avoid
this problem check the default letter size in the settings of your computer. Your
computer may scale the letters but not the window sizes and as a consequence,

the windows appear too small.
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Figure 1. Correct display of the Programita interface under the 1024 x 768 pixel mode.
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1.3. A quick start

1.3.1. Execute Programita

Execute programita2004b.exe and adjust Programita to your  Screen size
screen size. Two options are given, a screen of 800 x 600 pixels, ?. 1800204”35?0508

and a larger screen of 1024 x 768 pixels.

1.3.2. Load a settings file to redo an analysis

There is a convenient way to quickly start with
Programita and to learn the settings. You can read
a file (a *.res file) that contains all setting of a pre-
vious analysis and redo this analysis. For example,
you can repeat all analysis show in the figures 3 - 6
in Wiegand and Moloney (2004).

Calculate e Close Shop
Load Seftings for Example | Fephcates

Select a resulls hile ok chur

hgaC.res
highB.raz -1
figdC.rez
hghB. ez _'_.l

Figure 2. Load an example
settings file.

To load a settings file, apply the button “Load Settings for Example” (Fig. 2)
and a list with files containing settings of old analysis will appear (Fig. 2). Se-
lect a *.res file, for example fig3B.res, press ok, and then the button “Calculate
Index”. Now Programita performs the analysis of figure 3B in Wiegand and

Moloney (2004).
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1.3.3. What happens on the screen?

After loading the settings file fig3b.res, Programita will automatically select all
settings for the data and analysis mode and all settings for the null model that
was used in the example fig3B.res.

Two plots will appear: on the left a plot showing the original point pattern being
analyzed (Fig. 3a), and on the right appear the patterns of the Monte Carlo
simulations of the null model used for constructing the confidence envelopes.
After termination of the simulations of the null model, the figure with the simu-
lated patterns of the null model disappears, and instead a figure with the result
of the analysis appears on the right (Fig. 3b).

e e
b

5 arew imig |*

Figure 3a. Left: the point-pattern analysed in fig3B in Wiegand and Moloney (2004). Right:
One realization of the Monte Carlo null model (a random pattern, CSR) used to construct the
confidence envelopes.

Figure3b. After termination of the Monte
Carlo simulations of the null model, a figure
with the result appears on the right. The figure A
shows Wiegand-Moloney's O-ring statistics b=
(or Ripley's L-function) together with the

Unbvarisie O-ring seatiatle (W-ND)

. e .

-
R T a W, N

confidence envelopes for the specific null
model chosen. The top figure shows the re-
sults of the univariate point pattern analysis;
the bottom figure shows the results of the
bivariate analysis if a second type of points
was specified. In fig3B only one type of points
was used, therefore there appears no result for
the bivariate analysis.

OLNr)

y

J

3

4 & & I 13 14 6 I8 B 22
Spadial seale r foelle]

Bivariate O rimg statistic (W M)

4 6 B 10 12 M4 W DI MNNEN

Sputial seade ¢ feells]



12 USER MANUAL FOR PROGRAMITA

1.3.4. Save the results of the analysis

To save the results of the analysis press the button “save results” that appears
below the graph with the results of the univariate analysis (figure 3b), and insert
a name for the result file. The results file will be saved as ASCII file name.res in
the same directory where programita.exe is located. The results file (figure 4)
contains the settings of this analysis and the results of the univariate and the
bivariate point-pattern analysis. The results file name.res can be used (in the
same way as fig3B.res) in the previous section to load the setting and to repeat
the analysis.

Pointpattern analysis of file C:\THORSTEW\curso\nuevoimarcela.dat.dat
Hethod Wiegand-Moloney {(ring) with 19 replicates for confidence interval
Test Model= 12random

the null assumed homogenseous pattern(=)

Analy=is modus= multiple

several points per cell allowed

All cells within the rectangle were considered for calculating the indices
number points of patternl = 267

numbher points of pattern? = 1]

the rectangular area contains 198+191 = 37818 cells (= diml#*dim?)
H-grid-gize= 198 y-grid-sgize= 191 cell-gize = 1.0000 units

Scale v WMilir)h, Ell-, Ell+, WH1Z2{r), ELZ- . E12+4
o 1.0278746 1.0000000 1.0278746 0D.000DO0DD O.0000000 o.onooononn
1=— T 0D.0D0OD0OD  O.0D44072 0.0114%588 O.0000000 O.00ODO0OO0 0. ooooonn
2 -r 0.00307536 O.0040009 0.0123866 0.0000000 O.0000000 0. ooooonn
3rr 0.0116136 0O.0060520 0.0120503 O.0000000 0O, 0000000 0. oopoooo
4 +r 0.0167229 0O.0053619 0,.0096111 O.0000000 O, 0000000 0, nooonnnn
3+ r 0D.0128600 O.0D52102 0.00B8624 OD.00O0O0O0O0D O.0000000 0. onoononn
6+ r 0D.0125429 DO.0D03564350 0.0104407 O.0DDODODOD O, 00DODO0 0. onoooonn
T+ r 0.0110644 O0.0039284 0.00%96626 0.0000000 O.0000000 0. oooooono
Brr 0.0087497 0.0064436 0.0095510 O.0000000 0, 0000000 0. oodoooo
9 rr 0,.00873797 0.0056123 0.009262% 0. oo 0, Do o, novomoo
i0 + r 0.010806GE O.00D61435 0.0099628 0O.0000000 O.0000000 0. noononn

Figure 4. The *.res results file (fig3B.res). The first 11 lines contain the information on the
settings of the analysis; the following part contains a table with the results of the analysis. The
first column gives the spatial scale  of the point-pattern analysis, the second and third column
provide a summary of the Monte Carlo significance test of the null model ("-": data at scale
below the confidence intervals, "r": inside the confidence envelopes, and "+": above the confi-
dence envelopes; second column for univariate analysis, third column for bivariate analysis),
columns 4, 5, 6: results of univariate analysis (column 4: univariate L-function or O-statistic of
the data, column 5: lower confidence envelop, column 6: upper confidence envelope), and col-
umns 7, 8, 9: results of bivariate analysis (column 7: univariate L-function or O-statistic of the
data, column 8: lower confidence envelop, column 9: upper confidence envelope).
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1.3.5. Temporary data files

During the analysis, Programita creates a number of temporary data files which
are overwritten by a new analysis. Knowing these files you may use the infor-
mation they contain.

The files tempp1.dat and tempp2.dat—The file tempp1.dat contains a matrix
representation of pattern 1. The first line contains information on the dimen-
sions of the grid: (1, number of lines, 1, number of columns). The following
lines are the data matrix with the pattern. The numbers are not code numbers as
in the matrix data format but give the number of points of pattern 1 in a given
cell. The file tempp1.dat does not contain information on an irregularly shaped
study region.

The file tempp2.dat is the analogue to temppl.dat and gives the number of
points of pattern 2 in a given cell.

The files Bi confidence.dat and Uni_confidence.dat—Programita uses the
lowest and highest O(r) [or L(r)] of the different simulations of the null model
as confidence envelope. However, it automatically produces two temporally
files (Uni_confidence.dat, Bi_confidence.dat) that contain the O(r) [or L(r)] for
all simulations of the null model. The columns of these files are the scales » =1,
Fmax> and the lines are the different simulations of the null model. You may use
this information to construct confidence envelopes with different definitions, for
example the 5th highest and 5th lowest O(r) [or L(r)] out of 99 replicate simula-
tions of the null model for defining 95% confidence envelopes (e.g., Stoyan and

Stoyan 1994).

The file tempshape.dat.—f you analyze an irregularly shaped study region in
the mode "Points without grid", Programita creates the file tempshape.dat. This
file is the version of your data in the mode "Points in grid"

The file temp.fit.—f you fit a Neyman-Scott cluster model to your data pro-
gramita saves the results of the fit in the temporary file temp.fit. However, the
menu of Programita allows you to save the results of the fit under any name.

The files RL join 1.rlb and RL join 2.rlb.—Programita uses these files to
show you, without performing new simulations of the null model, the results of
the different variants 1 - 6 of random labeling.
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1.4. The input data files (*.dat and *.asc data files)

Programita performs point pattern analysis for two different situations. First, it
calculates the O-ring statistic and the L-function for point pattern which are basi-
cally given as a list of points. In a second mode, Programita performs point-
pattern analysis for categorical maps. In this case the data input is a matrix with
categories that can range from 0 to 9. It is important to understand the difference
in point pattern analysis between points and categorical maps. In the following
we discuss the data input separately for these two modes.

1.4.1. Settings for point-pattern analysis using lists of points

Programita performs common point pattern analysis for patterns which are given
as a list of coordinates. In this case enable "List" in menu How are your data organ-
ized? (figure 5 left). There are two options for lists: (1) the data are list of coordi-
nates, or (2) the data are transformed to a grid. If your data are a list of coordi-
nates of points select the option "List with coordinates, no grid" in the settings
menu Select modus of data (figure 5 right). If the coordinates in the list refer to cells
of a grid select "Data are given as list in grid" in the settings menu Select modus of
data.

How are your data organized? Select modus of data
% Ligt [only *.dat) = Data are given as matiz map 2
= Matrix [*.dat ar * azc) ¥ Dataare given as listinarid 2
' = Ligt with coordinates, no grid 2

Figure 5. The settings menus for data input.
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1.4.2. Preparation of data in grid-mode for lists of points

The data file must be a space (or tab) delimited ASCII file with the *.dat exten-
sion (see example in figure 6). You need to provide information on the grid size,
the number of cells with data, and the coordinates of cells that contain points. If
your study region is of non-rectangular shape you need additionally to include
the empty cells of your study region into the list. The numbering of the cells can
start with any integer number; however, Programita will internally transform
the coordinates to integers that start with the coordinates 1. You can read data
which are given as numbers of points in a cell (in this case the columns 3 and 4
of the list can contain the values 0, 1, 2, 3,4 ...), or as a list of points with coor-
dinates (in this case columns 3 and 4 may contain only the values 0 and 1). The
grid size is automatically set to a value of 1.

0 197 0 190 283

(1] 136 1 0
(1] 132 1 0
1 61 1 i}
5 134 1 0
6 131 o il
10 125 1 0
10 21 1 0
13 a5 1 0
14 124 1 0
i7 48 1 i]
17 34 1 0
19 92 1 0
22 az 1 1]

Figure 6. Example of a data file for "Data age given as list in grid". Shown are the first lines of
the file marcela.dat used in fig3B.res. The first line contains information on the grid: it is a 198
x 191 grid with a grid size 1. The numbers of the first line: 0: smallest x-coordinate for a cell,
197: largest x-coordinate, 0: smallest y-coordinate for a cell, 190: largest y-coordinate, 283:
total number of cells to read (= number of lines in marcela.dat -1). The first column gives the x-
coordinates of the cells, the _ gives the y-coordinates of the cells, the third col-
umn gives the number of points of pattern 1 in the cell, and the fourth column gives the num-
ber of points of pattern 2 in the cell. The columns 3 and 4 can contain any integer number 0, 1,
2,... Note that a line "X I 0 0" defines an empty cell with coordinates (X, y). You need to in-
clude empty cells if you want to analyze a study region of non-rectangular shape.
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1.4.3. Preparation of data in points-mode

The data file must be a space (or tab) delimited ASCII file with the *.dat exten-
sion (see example in figure 7). In contrast to a data file in the grid-mode, the
coordinates in the point mode can be real numbers. This is a convenient feature
since many field data may be e.g., in meter units with centimetres as digits. You
need to provide information on the edge-coordinates of your study region, and
the number of points in the list. If your study region is of non-rectangular shape
you need additionally a (*.shp) data file with a list of points that encircle your
study region. In this case the edge-coordinates of your study region are the co-
ordinates of a rectangle that contains the entire study region.

0.00
F49.68
F51.27
108.27
139.59
129.54

55.55
F61.03
223.33
282.43

20.93
283.98

[=]
=

a00. oo L)

e e e el el -]

[ = I = I = I = = = = R = i = = i = |

Figure 7. Example of a data file for "List with coordinates, no grid". Shown are the first lines of
the file adults_real.dat. The first line contains the edges of the study region (xmin, xmax, ymin,
ymax), and the number of points in the list. The first column gives the x-coordinates of the
points, and the i gives the y-coordinates of the points. The third column contains
the indicator 1 if the point is of type 1 and the indicator O if the point is of type 2. The fourth
column contains the indicator 0 if the point is of type 1 and the indicator 1 if the point is of type
2. Note that the third and forth column can only have the values 0 or 1.
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1.4.4. Interval definition for points-mode

For transformation of your original coordi-
nates to the internal grid coordinates of Pro-
gramita, you need to provide a cell size. The
cell size defines the resolution of the analysis
with Programita. Selection of an appropriate
cell size is constrained by the sampling error
of the coordinates of the points that defines a
minimum cell size, and by computational
time for larger grids. A resolution coarser
than the sampling error can be selected; this
will depend on the minimum resolution of
distance classes necessary for responding to
the scientific question.

17

Select a new cell zize
Here are edge coordinates of wour
study region and the cell size that
would cormezpond to a gnd with 100
cellz at the wides side:;
wrnir = 0.00 ymin =000
wnax =B00.00  pmax =500.00

proposed cell size: IE.DD I:l_kI
Scale point zize |1 o0 n::In:nseI

il

Figure 8. The window to select a cell
size.

After selecting a data file and enabling "List with coordinates, no grid" the win-
dow Select a new cell size opens and asks you to provide a cell size. To help you in
the selection of an appropriate cell size Programita shows the edge coordinates
of the study region and the cell size that would correspond to a grid with 100
cells in the wide size. You can select any cell size > 0. However, by selecting a
cell size be aware that large grids may considerably slow down Programita.

1.4.5. Transformation of data to grid for points-mode

Programita uses the following scheme for transformation of your original coor-

dinates to grid coordinates:

grid

coordinate | interval of original data

1 [0*cell size, 1*cell size)
2 [1*cell size, 2*cell size)
3 [2*cell size, 3*cell size)

n iil.l-l)*cell size, n*cell size]

where "[" is the closed interval that includes the left edge, and ")" is the open

interval that does not includes the right edge.
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1.4.6. Data input for point-pattern analysis using categorical maps

Programita facilitates analysis of categorical maps in raster format. For calcula-
tion of Wiegand-Moloney's O-ring statistic and Ripley's L-function, Programita

considers four different categories:

the cell is of type 1 (pattern 1)
the cell is of type 2 (pattern 2)
the cell is empty

the cell is outside the study region (mask)

The procedures for calculation of the O-ring statistic and the L-function for cate-

gorical maps are the same as for point data.

1.4.7. Difference between matrix and point mode

Because the content of a cell is not a num-
ber of points, but a category, the Monte
Carlo simulation of null models differs
slightly. Under the mode "Matrix" the null
model does not allow to have the same
category two times in a given cell. How-
ever, if you enable the checkbox "Only one
point per pattern” in the null-model window
(figure 9), Programita allows having a
mixed category where type 1 and type 2 are
together in one cell. Thus, Programita uses
in the matrix mode the same procedures for
calculation of the O-ring statistic, the L-
function, and for the null models as in the
"Point mode", but in the matrix mode only
one point (or one point per pattern) is al-
lowed in a given cell.

Select a null model
I'I 9 Give number of replicates

™ Pattern 1 and 2 random

% Pattern 1 fix, pattern 2 randors
" Random labeling

™ Cluster process

Feal shape [~ Pat1[7 Pat2
Jan IGet zhape fram fiIeI

[+ Orly one point per cell

[T Orly ore point per patterm
[T Heterogeneous Paoisson
[T Hard core

[T Save null models

I-ql-ql-q

?

?
E]
?
?

Figure 9. The null-model window for

the mode "Matrix".
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1.4.8. Preparation of data under matrix-mode

The input data are a matrix that can have the following code numbers:
e 0,1,2,...,9if the cell is inside the study region
o -1 (or-9999) if the cell is outside the study region (mask)

Programita reads two different data formats in the matrix-mode:
1. a space (or tab) delimited ASCII file with the *.dat extension with line
breaks.
2. the ASCII format of ArcView (a *.asc file) without line breaks. The head
of the *.asc file must look like this:

ncols 144

nrows 45

xllcorner 1
yllcorner 1

cellsize 1
nodata_value -9999

ncols gives the number of columns, nrows the number of rows, xllcorner the
smallest x-coordinate, and yllcorner the smallest y-coordinate. The cellsize must
be "1" and the value for no data (the mask) must be -9999.

The matrix mode allows you to use a data ma- -
Give code numbers for patterns

trix with different code numbers, however, Paten1 5 @ 515 M2]
calculation of Wiegand-Moloney's O-ring_sta- Pattem2 [1 [2 [6 |6 |
tistic and Ripley's L-function Programita re- b ask EREREIEEE |

quires a reduction of the original code numbers

to the four categories: Figure 10. Transformation of the

original code numbers of the data

e the cell is of type 1 (pattern 1) matrix to the three categories: pattern

e the cellis of type 2 (pattern 2) 1, gattern 2, and11 ma;k outside the
. . . t ion. A t t i

e the cell is outside the study region ShCy fesion OTer aepones

which are not set are automatically
(mask) defined as empty cells.
o the cell is empty

If you enable the "Matrix" or "Data are given as matrix" option, the window Give
code number for patterns (figure 10) appears and ask you to group your code num-
bers into the final categories "pattern 1", "pattern 2", and "mask". All other cells
with code numbers not defines as pattern 1, pattern 2, or mask are defined auto-
matically as empty cells. You can combine up to four code numbers (but not -1)
to define "pattern 1" and "pattern 2", and up to four categories (including -1) to
define the area outside the study region.
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Thus, you can mask, if required, additionally cells which are part of the original
the study region. For example, if you study vegetation maps with category 0:
bare ground, category 1: grass tufts (size of one cell) and category 2: shrubs (size
of several cells) you may mask the area occupied by shrubs for studying the spa-
tial pattern of the grass tufts. If you do not exclude the area occupied by shrubs
(which cover perhaps 10% or so of the study region) a simple null model that
randomizes the locations of the grass tufts (CSR) will distribute tufts at locations
where they cannot occur in the field. This introduces a bias in the analysis.

The possibility to use up to 10 categories is a convenient feature because you can
use the same data for different analyses. Be sure that a given code number does
not appear in different categories. A given cell can either be pattern 1, pattern 2,
empty, or mask!

1.4.9. Format of the *.dat matrix data file

The *.dat matrix data file is a space (or tab) delimited ASCII file. The first line
contains information on the dimensions of the grid: (1, number of lines, 1, num-
ber of columns). The following lines are the data matrix with the different code
numbers. In contrast to the ArcView ASCII matrix format you need to insert
line breaks. Note that the visualization of Programita corresponds to the trans-
posed matrix. (figure 11).

Give code numbers for patterns

130 1 20 Pateml [T W T .ﬂ
o 0 0 0 0 0 @ 0 ¢ 0 0 0 0 0 0 © 0 0 0 0 Paen2|z [z [z[z W
o o 0 0 © 0 O O © 0 0 0 O 0 © © © 0 0 0

2 o o o 2 o o 2 o 0o 2 o 1 1 1 1 o o o o Mak - | |
o 2 o0 o 2 0 o 2 © o0 00 1 i 1 1 1 1 1 © @

o o o o o ©o o 2 @ 2 1 1 1 1 1 1 1 1 1 o O H N 1]
n 2 L] 2 1 2 1 [} i) [i] 1 2 1 1 1 1 1 1 1 o .

i) L] 1 1 1 1 2 1 (i} L] [i] [i] 1 1 1 1 1 o o o L .

i) [i] 1 1 1 1 1 1 1 [i] [i] [i] [i] [i] [i] [i] [i] o 2 o B [ |

2 L] 1 1 2 1 1 1 1 [i] [i] 2 [i] (i) 2 [i] [i] o o o

1] o o o 1 1 1 1] 1] [i] [i] [i] [i] [i] [i] 1] 2 o 2 o 2]

1 o 2 1] (1] (1] (1] 1] o 1 2 (1] (1] (1] 1] 1] 1] o o o

1 a 1] 1] 2 (1] 2 1] 1 1 (1] 2 (1] 1] 1] 1] 1] o o o

o 1] 1] o (1] (1] 1] 1] 1 1 [1] [1] (1] 1] 1] 1] 1] o o o .

o 1] 1] 2 (1] (1] 1] 1] 2 2 [1] [1] (1] (1] 2 1] 1] o o -1 0

o o a o o 2 o o (1] o (1] (1] (1] [1] 1] 1] 1] o -1 -1 I
o o o 1 1 o 1 1 o 1] o 1] [1] [1] [1] o -1 -1 -1 -1 . .

o o 1 1 o 1 1 1 o o o o 1 1 (1] o -1 -1 -1 -1

o o o 1 1 o 1 1 o o o 1] (1] (1] o -1 -1 -1 -1 -1 .

2 o 2 1 1 1 1 o o 1] o 1] (1] 2 -1 -1 -1 -1 -1 -1 . .

o o o 2 1 1 1 1 o o o 1] ¢ -1 -1 -1 -1 -1 -1 -1

Figure 11. Example of a *.dat input data file for the matrix mode. Shown are the file
small matrix.dat (left) and the visualization in Programita (right). Red: cells of pattern 1 (code
1), green: cells of pattern 2 (code 2), grey: empty cells (code 0), black: mask with cells outside
the study region (code -1). The first line contains information on the grid: (1, number of lines, 1,
number of columns). Note that the visualization of Programita corresponds to the transposed
matrix.



THORSTEN WIEGAND 21

1.5. The Settings Menu for Point Pattern Analysis

If you select in the menu What do you want to do? "Point-pattern analysis", Pro-
gramita allows you to select different types of analysis, input data, input data
formats, etc. If you do not use a *.res settings file that stores the settings from a
previous analysis you need to carefully select all settings manually from the set-
tings menu before performing any analysis.

Programita calculates Ripley's L function (Circle in Which method will you use) and
Wiegand-Moloney's O-ring statistic (Ring in Which method will you use) in a grid-

based implementation for a given data file (selected in Input data file).

What do you want to do?
?| & Paint-pathern analyze:

7| © Homogeneily test

T  Rurning reean ol vanable

T| © Spatial sutocomelation

2| © Digtance to shapse

™ Combre rephcabes ﬂ

[T Calculabs confidence interval

Input data file  Screen size

How are powr data organized?
O List foriy dat] 7]
= Matnn [".dal of = &)
Give modus of analpziz EJ
" Anabze all data in phat
 fnegulay shaped shudy regior;
Which method will you use?

?| & RingWisgandMolaney)
7|  Cicle [Ripley]

|'| rirug width

el mﬂn‘mﬂl |I‘|:IJ.|J! nmmax
defauk | zet o defaull

Select modus of data

+ Data are given &5 mabis map 7
" Dataaregvenazstngnd 7

" List with comdinates. nognd 3

Giwe code numbers for pattemns
Patem! 7 7 77 M2
Paten2 (1 [1 11 [

M ask B

Figure 12. The settings menu
for Point-pattern analysis.

In the window How are your data organized? you can
select between two types of input data: (1) data
which are given as a list of points and (2) categorical
data which are organized as a matrix.

1.5.1. List of points

If your data are organized as list of points, you need
to specify in the window Select modus of data whether
your data are already transformed to a grid (integer
coordinates) or if they are a list of coordinates (inte-
ger or real coordinates) without reference to a grid.
In the latter case you need to provide a cell size.

1.5.2. Matrix data

If your data are a matrix (categorical data), you need
to specify in the window Give code numbers for pattern
which code numbers of your data matrix make up
pattern 1, pattern 2, and the mask. The mask defines
the area outside the study region if your study region
is irregularly shaped.
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1.5.3. Arbitrarily shaped study region

You can consider any arbitrarily shaped study
region supported by the grid structure. If you se-
lect in the window Give modus of analysis the option
"Irregularly shaped study region" some cells of
the rectangular grid are not considered during the

Give modus of analyziz ll
% Analyze all data in plot
= lregularly shaped study region

Monte Carlo simulation of the null models, and cells outside the study region are
not counted for the numerical implementation of the L-function and the O-ring
statistic. In contrast, if you select "Analyze all data in rectangle" the study region
is the rectangle defined by your grid and all cells of the rectangle count and all
cells are considered for simulation of the Monte Carlo Null models.

1.5.4. Arbitrarily shaped study region for *list in grid*

If your data are organized as list in a grid the list needs to include all cells with
points and all empty cells of the study region. All cells that do not appear in the

list are automatically defined as mask.

1.5.5. Arbitrarily shaped study region for *'list without grid"'

If your data are organized as list without grid, a
window opens and ask you to provide a file with a
list of points that encircle the study region (figure
13). This data file needs to be a space or tab de-
limited ASCII file with the *.shp extension. The
first line gives the number of points in the list, and
the following lines give the coordinates of the
points that encircle the study region. The *.shp
list of points (figure 14) need to define a closed
shape. Be sure that the resolution of the line that
encircles the study region is in accordance with
the minimal cell size you will use.

If the resolution of the line is too coarse, Pro-
gramita cannot properly define the study region.
Be sure that the points in the *.shp list are defined
in the same units as the points in the *.dat file that
define your patterns. Programita asks you to con-
firm the cell size and to select the *.shp file.

Define imegulanly shaped study area

fou selected the option “regularly shaped
sludy region’ under the modus "List with
coordinates”. Select

1) appropnate cell size for pouwr data
2] shape hile with boaider ol habitat

Select a shape file
Shapeinzel shp

Cell sz

Cancel and proceed with all data in plot |

Figure 13. Window to define an
irregularly study region if the data
are points without grid.

72
T2u54 135512
75587 137188
75988 133637
775082 138748
76690 127758
760851 125286
77am 122121

Figure 14. Example of the first
lines of a *.shp file.
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1.5.6. Arbitrarily shaped study region for matrix data

If your data are organized as matrix you can
define a mask (cells outside the study region)
with the category "-1", but additionally you can
use any code number of your data matrix as

mask.

1.5.7. Maximum scales r and ring width dr

The analysis is performed for spatial scale » = 1,
.. 'max. The default value of the maximal scale
Fmax 1S half of the dimension of the smaller side
of the grid; however, rm., can be changed with
the button set maximal radius rmax.

Give code numbers for patterns

Pattern 1 |3 [4 [5 |5 -il

Pattern 2 1 |2 |B |B -
Mask [ [ M

|1 ring width

change| zet maximal radius rmax
default | zet to default

If you select the O-ring statistic, you can change the ring width dr in the box ring
width. The default ring width dr is one cell; however, if the rings are too narrow
Programita will produce jagged plots for O(r) as not enough points will fall into
the different distance classes (figure 15). In this case you may select a larger ring

width.

non2
?-‘WIE
S g0
0.000

L

00015
00012

g:.m
S.0006
0.0003

Undvariate O-ring statistic (%5

ning width efr

e A

0 5 W 15 W
Spatial scale 1 [cells]

Univariate (-ring statistic (W-M)

ring width o

ey terten

15 ®2 %
Spatial seale r [cells]

Figure 15. Different ring widths
dr. The example shows the O-ring
statistic ~ for the data set
adults real.dat with a cell size
0.5m and a ring width dr = 1 (top)
and a ring width dr = 4(bottom).
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Figure D1. Numerical implementation of the L- function and the O-ring statistic for an irregu-
larly shaped study region. Points of pattern 2 are represented by closed circles, the focal point /
of pattern 1 as open circle within the red cell. Note that we_approximate circles and rings with
the underlying grid structure. Study region: grey and white cells, area outside the study region:
black cells. (Left): For numerical implementation of Ripley’s bivariate L-function we count the
number of points of pattern 2 inside the part of the circles around point / of pattern 1 which falls
inside the study region (i.e., the gray shaded area), and the number of cells within this area.
(Right): For implementation of the bivariate O-function we count the number of points of pat-
tern 2 inside the part of the ring around point / of pattern 1 which falls inside the study region
(i.e., the gray shaded area), and the number of cells within this area.

2. Background of second-order statistics

For a homogeneous and isotropic point pattern, the second-order characteristics
depend only on distance 7, but not on the direction or the location of points. An
appropriate geometry is therefore to adopt circular shapes (such as the circles of
Ripley’s K-function or the rings of Wiegand-Moloney's O-ring statistic) as a
basis for the spatial statistics. Using rings instead of circles (Figure D1) has the
advantage that one can isolate specific distance classes, whereas the cumulative
K-function confounds effects at larger distances with effects at shorter distances.
Note that the K-function and the O-ring statistic respond to slightly different
biological questions. The accumulative K-function can detect aggregation or
dispersion up to a given distance » and is therefore appropriate if the process in
question (e.g., the negative effect of competition) may work only up to a certain
distance, whereas the O-ring statistic can detect aggregation or dispersion at a
given distance 7.



26 USER MANUAL FOR PROGRAMITA

2.1. Ripley's K and L-function

2.1.1. Definition of the bivariate K- and L-functions

The bivariate K-function Kj»(7) is defined as the expected number of points of
pattern 2 within a given distance r of an arbitrary point of pattern 1, divided by
the intensity A, of points of pattern 2:

A» Ki»(r) = E[#(points of pattern 2< r from an arbitrary point of pattern 1)] (D1)

where # means “the number of”, and E[] is the expectation operator. Under in-
dependence of the two point patterns, K1»(r) = 1 *, without regard to the indi-
vidual univariate point patterns. It can be difficult to interpret K;»(r) visually.
Therefore, a square root transformation of K(r), called L-function (Besag 1977),
is used instead:

Lo)= (2 ) (D2)
This transformation removes the scale dependence of Kj,(r) for independent
patterns and stabilizes the variance (Ripley 1981). Values of Lj(r) > 0 indicate
that there are on average more points of pattern 2 within distance » of points of
pattern 1 as one would expect under independence, thus indicating attraction
between the two patterns up to distance r. Similarly, values of Li»(#) < 0 indi-
cate repulsion between the two patterns up to distance r. The estimated L-
function L,,(r) is calculated for a sequence of distances » and the results of
L, (r) are then plotted against distance.

2.1.2. Confidence envelopes

Because a given data set is only a unique realization of a given stochastic point
process within a study region of limited size, the estimators of the L-function or
the O-ring statistic may show small deviations from their theoretical values un-
der a given null model. In order to test a null model against real data it is there-
fore necessary to take uncertainty due to (1) the stochastic character of the point
process and uncertainty due to (2) the limited sample size (the number of points
N of the pattern may be small) into account. Theoretically, distribution theory
could be used in determining confidence envelopes for null models of point-
patterns. However, this approach quickly becomes analytically intractable if
edge effects for irregularly shaped study regions are considered, or if null mod-
els other than CSR are considered. Therefore, the more practical alternative is to
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use Monte Carlo simulations of a realization of the stochastic process underly-
ing the specific null model in constructing confidence envelopes around the null
model (Upton and Fingleton 1985; Bailey and Gatrell 1995). Each simulation
generates an ilz(r) function, and approximate n/(n + 1) x100% confidence en-
velopes are calculated from the highest and lowest values of L,,(r) taken from n
simulations of the null model. For example, a 95% confidence envelope requires
n = 19 simulations (e.g., Bailey and Gatrell 1995). A more accurate approach is
to use the Sth-lowest and 5th highest ]:12(7”)- In this case, 99 randomizations
provide 5% confidence envelopes (e.g., Stoyan and Stoyan 1994). If L,,(r) has
some part outside of that envelope, it is judged to be a significant departure
from the null model.

Programita uses the lowest and highest L,,(r) for determination of the con-
fidence interval, however, it automatically produces two temporally files
(Uni_confidence.dat, Bi_confidence.dat) that contain the l:”(r) and L, (r)for
all simulations of the null model. The columns are the scales » = 1, rmax, and the
lines are the different simulations of the null model. You can use this data for
alternative constructions of confidence envelopes.

2.1.3. The Univariate K- and L-functions

The univariate K-function K(r) is calculated in a manner analogous to the
bivariate K function by setting pattern 1 equal to pattern 2. In this case the focal
points of the circles are not counted. For a homogeneous Poisson process (com-
plete spatial randomness CSR), K(r) = n #* and L(r) = 0. L() > 0 indicates ag-
gregation of the pattern up to distance », while L(r) < 0 indicates regularity of
the pattern up to distance r.

2.2. Wiegand-Moloney's O-ring statistic

2.2.1. Definition of the O-ring statistic and the g-function

The mark-correlation function g;»(7) is the analogue of Ripley’s Kj»>(r) when
replacing the circles of radius by rings with radius », and the O-ring statistic
O12(r) = 22 g12(r) gives the expected number of points of pattern 2 at distance r
from an arbitrary point of pattern 1 (Fig. 1B):

O1,(r) = E[#(points of pattern 2 at distance » from an arbitrary point of pattern 1)] (D3)

The mark-correlation function gj,(r) is related to Ripley’s K-function (Ripley
1981; Stoyan and Stoyan 1994):
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g () =2 o) (D4)

We obtain Oix(r) = A, for independent patterns, Oj»2(r) < A, for repulsion,
whereas O,(r) > A, for attraction.

2.2.2.Selection of ring width

In practice, the calculation of the O-ring statistic involves a technical deci-
sion on the width of the rings. Clearly, the use of rings that are too narrow will
produce jagged plots as not enough points will fall into the different distance
classes. This problem does not occur for the accumulative K-functions. On the
other hand, the O-ring statistic will lose the advantage that it can isolate specific
distance classes if the rings are too wide.

Again, the univariate O-ring statistic O(r) is calculated by setting pattern 2
equal to pattern 1. For CSR, O(r) = 4, O(r) > A indicates aggregation of the pat-
tern at distance 7, and O(r) < A regularity.
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2.3. The memory in the K-function

Departure from the expectation under independence at a given scale ry [e.g.,
repulsion due to non-overlapping tree canopies] yields a K-function K(ry) # ©
roz. Because the K-function is accumulative, the value K(ry) influences the shape
of the K-function also at scales » > ry. This can be show mathematically for a
pattern with no second-order effects at scales » > r¢ [thus g() = 1 for » > r¢], but
a second-order effect up to scale 7. In this case integration of equation D4 yields

K(r) = I27z7" g(r' )dr'+j 2 dr'!
0 r0
(M1)
= K(r)—my +m’
and the L-function becomes:
L(r)=—-r+ \/K(ro) —r+r’
T
s M2)

K(FO)ZWOZ)_I)
wr

L(r)= r(\/l +(

which collapses back to L(») = 0 if there are no second-order effects [i.e., K(7y) =
7 ro°]. For a hard core at ro = 0 [i.e., K(J) = 0], equation M2 collapses to
equation HC3. Fig. M1 shows how second-order effects at small scales [i.e., a
given K(rg) # Tr’, equation M1)] impact the L-function at higher scales if there
a no second order effects at higher scales [i.e., g(r) = 1 for » > ry].

Figure M1. The memory in the ac-

4
A cumulative Ripley’s L-function. True
3 second-order effects up to scale ry,
= and no second-order effects for scales
= r > ro. The different curves show
:i 0 equation M2 for initial values L(rp) = -
£ 4,-3,-2,-1,0,1, 2, 3, and 4. The bold
2 line gives the L-function without
second-order effects [i.e., L(r) = 0]
-4
L

Spatial scale r
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2.4. Virtual aggregation of univariate point patterns

If a pattern is not homogeneous, the null model of CSR is not suitable for explo-
ration of second-order characteristics. This is because large-scale, first-order
effects introduce a systematic bias in the univariate K-function, not only at larger
scales, but also at smaller scales. In this case, an observed departure from CSR
could well be due to first order effects rather than to second order effects (Bailey
and Gatrell 1995). This can be understood intuitively, when imagining a point
pattern that comprises a single internally homogeneous cluster in the center of
the study region (e.g., Example CSR_1, figure V1). In this case the local density
of points in the cluster will be higher than the overall density of points in the
entire study region (figure V1, left). As a consequence, there are always more
points in the closer neighborhood of other points than expected under homogene-
ity, and the K-function will indicate aggregation at smaller scales even if the pat-
tern is random inside the cluster (figure V1, right). We call this phenomenon
“virtual aggregation.”

0,020 4
© . g
i’u.n:s D‘Y~ § .
Zo0ow0 T i‘ .

] 4 SO Dop 1
[yt TR 1 st
= 0.000 |4 1 | DgPe0%e, 0R 0008 0000000000000y

0 5 {1} 15 0 15 EL] 1] 5 1] 15 o] 15 30
Spatial scale r [cells| Spatial scale r |cells]

Figure V1. The results of example CSR_1.res for the O—riI;g—statistic (left) and for Ripley's K
(right).

To demonstrate this intuitive idea mathematically, we imagine a univariate point
pattern with overall intensity A that forms an internally random cluster covering
the proportion ¢ of the study region. There are no points outside the cluster. Be-
cause sub-regions of the cluster satisfy CSR, the probability O(r) of finding a
point at the closer neighborhood  of other points will be approximately constant,
i.e. O(r) = g A with g = 1/c. To obtain the corresponding K-function we integrate
equation D4 using g(r) = O(r)/A =g and obtain K(r) =t g #*, which yields:

L) =r(g-1) (V1)

Thus, under virtual aggregation we observe an L-function that increases at
smaller scales linearly, and the extent of virtual aggregation, given through the
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slope \/E -1, is inversely related to the fraction ¢ of the study region covered by
the cluster. Note that for smaller scales (i.e., scales » below the cluster size) the
functional form of L(r) under virtual aggregation is the same as under a Neyman-
Scott cluster process (cf. equation V1 and equation C2). This is not surprising
because virtual aggregation is caused by larg-scale clustering. The difference is
that the cluster size under virtual aggregation is defined to be large, while the
Neyman-Scott process can be applied for any cluster size.

The L-function can increase under virtual aggregation only over a limited range
of scales; it will start to drop if a notable proportion of circles overlap the part of
the study region outside the cluster. Finally, the L-function will approach zero
for very large scales r because then all points will be located within each circle,
i.e., K(r)=mr*, and L(r) = 0.

If the pattern shows virtual aggregation but additionally true second-order effects
[i.e., a non constant pair-correlation function g(r) at scales » < ry, and g(r) = g for
r > r1], integration of equation I3 yields

K(r) = .[27z7f’g(r')dr'+'|. 27" gdr'
0 1
(V2)
= K-+ g
and the L-function becomes:
L<r>=—r+\/@—grf bt (V3)
T

which collapses back to equation V1 if there are no second-order effects [i.e.,
K(r1) = 1 g r°]. Note that equation V3 approximates the impact of virtual aggre-
gation only for a limited range of scales 7, and for large scales the assumption
g(r) = g does not hold because in this case the circles will overlap the gap.

Weak virtual aggregation increases the local density O(r) at smaller scales » only
slightly and it should therefore not seriously affect the outcome of second-order
analysis. However, the problem is that the Monte Carlo test for Ripley’s K will
indicate highly significant aggregation because the K-function is a cumulative
measure where aggregation at smaller scales influences the estimate at larger
scales (equation M1). The Monte Carlo test for the non-accumulative O-ring
statistic, however, will indicate the expected weak aggregation. Example CSR_1
illustrates this point.
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2.5. Numerical implementation of second-order statistics

Numerical methods require division of the study region into a grid of cells
(figure 1). Selection of an appropriate cell size is constrained by the sampling
error of the coordinates of the points that defines a minimum cell size, and by
computational time for larger grids. A resolution coarser than the sampling error
can be selected; this will depend on the minimum resolution of distance classes
necessary for responding to the scientific question.

2.5.1. Approximation of rings and circles in a grid

Circles and rings need to be approximated in a grid-based implementation. In a
first step, the grid-based approximation transforms the original coordinates of
points to coordinates of cells in a grid, and in a second step it uses the coordi-
nates of the grid cells to define (integer) distance classes r for the distance be-
tween cells. For a ring width of one cell (i.e., dr = 1), Programita uses the intui-
tive definition » = trunc(d) where d is the Euclidian distance between the coor-
dinates (x;, y1) and (x2, ) of two cells and the function trunc truncates all digits
of the real number and transform it to an integer (figure I1).

If the ring width dr is greater than one cell, the range of distances d that fall into
the scale » is broadened and two cells with distance d may belong to different
rings. To determine the different scales » to which a given pair of cells with dis-
tance d belongs, a lower scale r. = trunc(d - (dr -1)/2) and a upper scale r; =
trunc(d + (dr -1)/2) is calculated. The pair of cells belongs to all rings with
scales r that fall inside the interval [r., r4].

Figure I1. Approximation of rings with scale

10 1075“-10&_43& r and ring width of one cell (dr = 1) in the

ol9e oL 0~ grid-based implementation. The integer num-
‘?T-é 5.8 B10 10 ber. ina given cell .corresponds to the scale r of
“:_??“‘ﬁ\ o o g\ a ring with centre in the cell "0".
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For example, two cells with distance d = 3.8 belong to a ring with scale » = 3 if
the ring width is one cell. For a ring width of two cells, they belongs to the rings
with scales 3 and 4 since r. = trunc[3.8 - (2-1)/2] = trunc[3.3] = 3 and r. =
trunc[3.8 + (2-1)/2] = trunc[4.3] = 4.
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The definition of the scale 7 of circles is analogous to the definition of the rings:
a pair of cells with distance d belongs to all circles with scale » > trunc[d].

2.5.2. Test of ring approximation

To test our classification scheme for the scale » we calculated the probability
that random points in cells separated by scale » have a real distance d. For a
valid classification scheme we expect an average distance d close to the scale r,
and that real distances have some normal-like distribution around scale » which
is only little skewed. To this end, we distributed random points over a study
region which had a x- and y-extension of 4 units (figure 12, left). Next we classi-
fied the points in cells with a cell size of one unit following our grid approxima-
tion and calculated the real distance of all points in the focal cell (scale » = 0,
figure I1) to all points in cells which are scale » = 1 away. We then repeated this
procedure for scales » = 2 and 3 (figure 12). We find that the scale » coincides
well with the mean distances d, and the frequency distribution of the real dis-
tances of the real distances are only slightly skewed (figure 12, right). Thus, our
grid-approximation of rings and circles is appropriate.
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Figure 12. Test of our grid-approximation. Left figures: random points in the focal cell (red)
and random points in cells which we classified to be at scale r from the focal cell (green dots).
Right figures: frequency distribution of the real distance r of all points in the focal cell to all
points in cells which are scale  away. The scale r coincides well with the mean distance d, and
the frequency distributions of the real distances are only slightly skewed. Thus, our grid-
approximation of rings is appropriate.

2.5.3.Numerical implementation of L(r) and O(r)

Ripley's K-function is defined via AK;,(r), which is "the expected number of
points of pattern 2 at distances smaller or equal than » from an arbitrary point of
pattern 1". The grid-based implementation of Programita considers only cells
inside the study region and calculates

. lz Points,[C, ()], (I1a)

ny iz

the mean number of points of pattern 2 in circles of radius » (centered in
the points of pattern 1) inside the study region
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. iZArea[Cu (], (I1b)
ny i
the mean area of these circles inside the study region

where C;(r) is the circle with radius » centered on the ith point of pattern 1, n,
the total number of points of pattern 1 in the study region, the operator
Pointsy[X] counts the points of pattern 2 in a region X, and the operator
Area[X] determines the area of the region X. The full formula of the grid-based
estimator of AK,(7) used in Programita yields:

L3 points, [C, ()]
121212 (r) _ nllizlnl 7Z7/'2 . (13)
— > Area[C,,(r)]

1 i=1

To implement equation 13 we marked each cell (x, y) with an identifier S(x, y)
[S(x, y) = 1 if a cell with coordinates (x, y) is inside the boundaries of the study
region, otherwise S(x, y) = 0] and with two additional marks P,(x, y) and Px(x, y)
that give the number of points of pattern 1 and pattern 2 lying within the cell,
respectively. Using these definitions, the numerator of equation I3 becomes:

Points,[C,, (] =D > S(x, )P, (x, 1), (x;, y;,%,¥) (14)

allx all y

where (xj, ;) are the coordinates of the ith point of pattern 1, and the counter
variable /. defines the circle with radius 7 that is centered at the ith point of pat-
tern 1:

1 if \/(x—xl.)2+(y—yi)2 <r
1,(x[,y[,x,y) = . (IS)
0 otherwise

The denominator of equation 13 is calculated analogously to equation 14, but it
counts cells instead of points:

Area[C, (N]=z") > S(x, »)I,(x;,,,%,) (16)

allx all y
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where z° is the area of one cell. Because equation 14 and equation 16 include the
identifier S(x, y) of the study region, only points and cells are counted that are
inside the boundaries of the study region. Therefore, the study region can be of
any complex shape accommodated by the underlying grid. Using equation 13,
our numerical estimator of the L-function is given by:

ilz(’”) = -r

Il
—_
Q_
=
VR
>
¥
a [
IS
N~
~N
~
N—
|
—_—
N

a7)

z Points,[C,,(r)]
i=1

r( |— —-1) using eq. 13

n,

i Area[C,;(r)]

where 4 is the area of the study region, and #, the number of points of pattern 2
inside the study region.
The analogous numerical estimate for the bivariate O-ring statistic is:

1 Z Points,[R" (r)]

O (r) = gy (1A, = - . (18)
= Area[R" (r)]

1 i=1

where R;;"(r) is the ring with radius » and width w centered in the ith point of
pattern 1. The numerator and the denominator of equation I8 are the same as
given in equation I4 and equation 16, respectively, but the counter variable /; for
circles has to be replaced by a counter variable ;" that defines a ring with radius
r and width w around the ith point with coordinates (x;, yi):

1 if r—%s\/(x—xi)2+(y—yi)23r+%

]:V(xiayi:xay) = (19)
0 otherwise
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3. Univariate Null Models

The key for successful application of Programita is the selection of an appro-
priate null model that responds to the specific biological question asked. The
null model constitutes a point of reference against which the data are compared.
The simplest null models assume no interaction between the points of the pat-
tern and deviation from this null model provides evidence for interactions. The
grid-based implementation of Programita facilitates simple implementation of a
variety of null models that account e.g., for irregularly shaped study regions,
first-order heterogeneity, or a cluster process. Because there are fundamental
differences between the univariate and bivariate point pattern analysis, we pre-
sent null models separately for the univariate and the bivariate case.

3.1. Complete Spatial Randomness (CSR)

3.1.1.Background

The simplest and most widely used null model for univariate point patterns is
complete spatial randomness (CSR) that assumes no interactions between the
points of the pattern. CSR can be implemented as a homogeneous Poisson proc-
ess. Homogeneous means that the first-order intensity A of the pattern is con-
stant over the study region (there are no first-order effects), and Poisson means
that the probability of finding & points in an area W follows a Poisson distribu-
tion with mean AW. Thus, any point of the pattern has an equal probability of
occurring at any position in the study region, and the position of a point is inde-
pendent of the position of any other point (i.e., points do not interact with each
other).

If a homogeneous pattern is spatially restricted by obstacles or environmental
heterogeneity (e.g., differences in soil), the appropriate null model is CSR, but
applied only within an irregularly shaped study region. Note that the numerical
approach of Programita [equation 14 and equation [5] can deal with any irregu-
larly shaped study region accommodated by the underlying grid.

3.1.2.Rectangular study region (CSR_1.res)

CSR is the basic null model for univariate patterns and most settings for CSR
will apply equally for other univariate null models. Therefore, we explain all
steps of the analysis for CSR in detail, but skip some of these details in the de-
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scription of the other univariate null models.

10)

11)

12)

13)

highlight the data file "marcela.dat" in the window Input
data file

select "List" in How are your data organized

select "Analyze all data in rectangle" in Give modus of analysis
select "Ring (Wiegand-Moloney)" in Which method will you use? if
you like to use the O-ring statistic [and Circle (Ripley)
if you like to use the L-function]

select an appropriate ring width dr in the box ring width.
Usually a ring width of one cell is appropriate, however,
if the intensity A of points in the study region is too
low, the graph of the O-ring statistic will be jagged and
selection of a larger ring width dr is appropriate

click the button "change" in set maximal radius rmax to define
the maximal scale r of the analysis and insert "40". A
too large scale ry., will slow down Programita.

select "Data are given as list in grid" in Select modus of data

click button "Calculate index". You pattern appears on
the left, and the O-ring function of your data appears on
the right.

To determine Monte Carlo confidence intervals for CSR en-
able the check box "Calculate confidence interval" on the
upper left. A window with settings for null models ap-
pears:

Select a null madel
I1E| Grve number of rephcabes

i® Paltesri 1 and 2 random 7
" Pattean 1 fis, pattern 2 random 7
" Random labelng ?
" Tomidal shift [pathesn 2 movees) 7
 Cluster process ?

O Togethe Exponent= |1.00

™ Oy one paink per cell ?
™ Dby one paint per patien 7
[T Heleogensous Poissan 7
T Had core ll
T Save rull modets

Select "Pattern 1 and 2 random".

You can change the number of replicate simulations of the
null model in the box "Give number of replicates".

Press "Calculate index". Programita now performs the
simulations of the CSR null model and shows you the pat-
tern of the Monte Carlo null models. After termination of
the simulations of the null model a graph appears, show-
ing the O-ring function of your data and the confidence
envelopes of your null model.

To save the results of the analysis press the button
"Save results" that appears below the graph with the re-
sults of the univariate analysis and insert a name for
the result file. The results file will be saved as ASCII
file with a *.res extension in the same directory where
programita.exe 1s located. It contains the settings of
your analysis and the results of the univariate (and the
bivariate) point-pattern analysis.

Programita uses the lowest and highest O(r) of the dif-
ferent simulations of the null model as confidence inter-
val. However, it automatically produces two temporally
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files (Uni confidence.dat, Bi confidence.dat) that con-
tain the O(r) for all simulations of the null model. The
columns of these files are the scales r = 1, I, and the
lines are the different simulations of the null model.
The temporary files are overwritten if you start a new
analysis.

3.1.3. Irregularly shaped study region, grid mode (CSR_2.res)

1)

highlight the data file "CircularGap.dat" in window Input
data file. This data file contains all cells with points of
the pattern and all empty cells of the study region.
select "List" in How are your data organized

select "Data are given as list in grid" in Select modus of data
select "Irregularly shaped study region" in Give modus of analy-
SIS

select in box ringwidth a ring width dr = 2. For dr = 1 the
O-ring statistic has a somewhat jagged plot at smaller
scales r.

click the button "Calculate index". You pattern appears
on the left, grey: the irregularly shaped study region,
black: the area outside the study region, and red dots:
the points of the pattern.

" .. " . Select a null model
¥ - pitie I'IEI Give rumbier of rephc abes

. - * Pattesn 1 and 2 randiom
e " Pattesn 1 Fee, pattern 2 random
" Randam lsbekng

" Rardom lzbebng special

™ Cluster process

" Pammutate cells [ together

[ vt |

I~ Orly ore poik per call

[~ Orly one point per pattesn
I Hetemgensous Peoissan
I Hadcoe

[T Save radl modets

[ ]t |2

To determine Monte Carlo confidence intervals enable the
check box "Calculate confidence interval”™ on the upper
left. A window with settings for null models appears. Se-
lect "Pattern 1 and 2 random".

Press "Calculate index". Programita now performs the
simulations of the null model and shows you the pattern
of the Monte Carlo null models. After termination of the
simulations a graph appears showing the O-ring function
of your data and the confidence envelopes of your null
model.
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3.1.4.1rregularly shaped study region, point mode (CSR_3.res)

1)

highlight the data file "Loch25.dat" in window Input data file.
This data file was created by distributing points ran-
domly over a 100 x 100 quadrate, but rejecting all points
inside a circle with radius 25 located in the centre of
the quadrate.

select "List" in How are your data organized

select "List with coordinates, no grid" in Select modus of
data. A window opens asking you to provide a cell size.
Insert "1.00".

select "Irregularly shaped study region" in Give modus of analy-
sis. A window opens and asks you (1) to confirm the cell
size, and (2) to select a file that delineates the ir-
regularly shaped study region. Click the button "Cell
size" and the button "ok" in the window for defining the
cell size (the cell size must be 1.00), next highlight
the file "circle25.shp" and click "ok".

click button "Calculate index". You pattern appears on
the left, grey: the irregularly shaped study region,
black: the area outside the study region, and red dots:
the points of the pattern.

To determine Monte Carlo confidence intervals for the CSR
null model enable the check box "Calculate confidence in-
terval"™ on the upper left. A window with settings for
null models appears. Select "Pattern 1 and 2 random".
Press "Calculate index". Programita now performs the
simulations of the null model and shows you the pattern
of the Monte Carlo null models. After termination of the
simulations a graph appears showing the O-ring function
of your data and the confidence envelopes of your null
model.
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3.2. Heterogeneous Poisson process (HP)

3.2.1.Background

If a pattern is not homogeneous, the null model of CSR is not suitable for explo-
ration of second-order characteristics, and a null model accounting for first-
order effects (or for clustering) has to be used to reveal “true” second-order ef-
fects. The heterogeneous Poisson process is the simplest alternative to CSR if
the pattern shows first-order effects. The constant intensity of the homogeneous
Poisson process is replaced by a function A(x, y) that varies with location (x, y),
but the occurrence of any point remains independent of that of any other. The
intensity function A(x, y) determines the process completely, and numerical im-
plementation of this null model is a matter of finding an appropriate estimate of
the intensity function.

The grid-based implementation of Programita facilitates a simple method to
implement the heterogeneous Poisson process using a moving-window estimate
AR of the non-constant first-order intensity A(x, y):

B Points[C,, ,(R)]

R
A= Area[C,, ,(R)]

(HP1)

where Cx, (R) is a circular moving window with radius R that is centered in
cell (x, y), the operator Points,[X] counts the points of pattern 2 in a region X,
and the operator Area[X] determines the area of the region X. This is basically
a kernel estimate with fixed bandwidth R (e.g., Bailey and Gatrell 1995). As
edge correction, the number of points in an incomplete circle is divided by the
proportion of the area of the circle that lies within the study region.

The algorithm for creating a pattern under a heterogeneous Poisson process is
simple: a provisional point is placed at a random cell (x, y) in the study area, but
this point is only retained with probability AR (x,y)/ max[/:tR (x,y)] (the function
max[X] determines the maximum of a variable X). This procedure is repeated
until # points are distributed.

The moving window estimator A”(x,y) involves a decision on an appropriate
radius R of the moving window. Because the bandwidth R is the scale of
smoothing, possible departure from this null model may only occur for scales
< R, and for small moving windows it will closely mimic the original pattern,
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whereas a large moving window approximates CSR.

3.2.2.Example (HP_1.res)

8)

9)

highlight the data file "marcela.dat" in window Input data file
select "List" in How are your data organized

select "Analyze all data in rectangle" in Give modus of analysis
select "Data are given as list in grid" in Select modus of data
click button "Calculate index".

Enable the check box "Calculate confidence interval”™ on
the upper left. A window with settings for null models
appears. Select "Pattern 1 and 2 random" and enable the
check box "Heterogeneous Poisson".

A window with settings for the moving window estimate of
the heterogeneous Poisson appears:

Setlings for helero, Poisson _IJ
2[5 gve radhes R of cicle

1'13' Surogabe for intensty
= Testonly for pathem 1
€ Testonly for pattem 2
T Test o joint pattenn 1 and 2
¥ Show distribution

Select "Test only for pattern 1" (pattern 2 does not ex-
ist in this example), and select a radius R=15 for the
moving window.

click button "Calculate index". Programita now calculates
the moving window estimate of the first-order intensity
of the pattern (right graph):

Click "ok" at the message window. Programita now performs
the simulations of the heterogeneous Poisson null model
and shows the patterns of the simulated null models. Af-
ter termination of the simulations a graph appears show-
ing the O-ring function of your data and the confidence
envelopes of the heterogeneous Poisson null model.
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3.3. Random labeling (RL)

3.3.1.Background

45

Univariate random labeling is a somewhat different approach to correct for un-
derlying environmental heterogeneity that can be used where a “control” pattern
is available to act as surrogate for the varying environmental factor. The as-
sumption of univariate random labeling is that the pattern of controls was cre-
ated by the same stochastic process as the primary pattern (“cases”). Therefore,
the n; cases represent a random sub-sample of the joined pattern of the n, con-
trol points and », case points. The test is devised by computing the univariate g-
function (or L-function) for the observed cases, then randomly re-sampling sets

of n; points from the (n; + n) points of the cases and controls to generate the
confidence envelopes. Note that the univariate random labeling null model
makes sense only if there are many more controls than cases. Univariate random

labeling is closely related to bivariate random labeling.

3.3.2.Example (RL_1.res)

1)

highlight the data file "marcela RL.dat"
data file. The data for pattern 1 (red dots)
the data in example HP l.res. The points
(green dots) were created by the heterogeneous
null model using a moving window with radius R
a surrogate for the
heterogeneous first-order intensity of the pattern:

in example HP l.res) and are thus

. :
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o
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select "List" in How are your data organized

in window
are identical to
of pattern 2
Poisson
(as

Input
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select "Analyze all data in rectangle" in Give modus of analysis
select "Data are given as list in grid" in Select modus of data
click button "Calculate index".

enable the check box "Calculate confidence interval" on
the upper left. A window with settings for null models
appears. Select "Random labeling".

click "Calculate index". Programita now performs the
simulations of the random labeling null model. After ter-
mination of the simulations a window appears:

Select one oplion
o012 oA

© on.012 ?| C 02.021
©on-021 7| C 02-012
ron-02 7| 02z-on

dnulnkl

enable 012 which is the appropriate setting for univari-
ate random labeling. The other options are for the
bivariate random labeling. Programita shows the univari-
ate gll-function (instead of the O-ring statistic) to-
gether with the confidence envelopes for the univariate
random labeling null model:

Univariade random labe ling with g-function (%-A)

1] 5 I 15 2 25 3 I 40 45 50
Spaiial scale r [cells]

As expected, the confidence envelopes are non-symmetric
to g = 1 because the null model corrected for the hetero-
geneity of the pattern.
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3.4. Poisson cluster process (NS)

3.4.1.Background

The Poisson cluster process explicitly incorporates a clustering mechanism. Par-
ent events form a CSR process and each parent produces a random number of
offspring according to a probability distribution f{). Offspring are spatially dis-
tributed around their parent according to some bivariate probability density /().
The final pattern consists of the offspring only. To avoid edge effects, the par-
ents must be simulated over a region larger than the study region but the off-
spring falling outside the study region are lost (Bailey and Gatrell 1995), or al-
ternatively the simulation of the cluster process may be implemented on a torus.
If the number of offspring follows a Poisson distribution and the location of the
offspring, relative to the parent individual, have a bivariate, Gaussian distribu-
tion, the offspring follow a Neyman-Scott process (e.g., Diggle 1983). The K-
function and the pair-correlation function g(») for the Neyman-Scott process are
given by:

_ .2 2
7zr2+1 exp(-r-/407)
P

K(r,o,p)

; (C)

2 2
1+exp( r-/4c°)

r,o-7
g(r,o,p) 4o p

where p is the intensity of the parent process, and o the variance of the Gaus-
sian distribution that determines the locations of the offspring relative to the par-
ent. The unknown parameters p and o must be fit by comparing the empirical
K (r) with the theoretical K-functions K(r, o, p) (see Diggle 1983).

Because o is the standard deviation of the distance between each offspring and
its parents, the cluster diameter yields ~ 20 For scales » below the cluster size
(i.e., r < o) the K-function can be approximated by K(r) = r’n + r*/(4pc?)
(Diggle 1983), and the L- and g-functions are approximated by

L(r,o,p) = r( /1+ ! -1
4mpoc

1
drpo’

(C2)

1+

Q

g(r,o,p)
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From equation C2 follows that the parameter p and o cannot be determined in-
dependently if the K- and g-functions are fitted only at smaller scales ». Com-
parison of equation C2 with equation V1 shows that the compound parameter
po” is directly related to the fraction ¢ of the study region covered by the cluster:
¢ = pc/(pc® + 1/4m). Thus, the simplest property of clustering (the area of the
study region covered by the cluster) is influenced in the same way by the inten-
sity p of parents and by the variance ¢ of the distance between each offspring
and its parents. The proportion ¢ does not change if the intensity o of parents
increases but the variance o® of the distance between each offspring and its par-
ent decreases accordingly. Clearly, the shape of the L- and g-function at larger
scales » may allow separating the two parameters p and o°.

The g-function is an important tool to visually es- &5
timate the cluster size. If g(r)>1 there are more E 52
points at distance r than expected for a random pat- & 2;
tern, thus you have aggregation at scale ». For ex- | = 12 g e

ample, if g(r) = 4, you find 4 times more points at T T
distance r from an arbitrary point of the pattern sty

than you would expected under a random pattern.

In the small inlet figure above you see that g>1 for » < 10 cells and g = 1 for r >
10. Thus, the cluster size will be < 10 cells and you can restrict the interval of
for fitting the cluster model to, say rmax = 20. Deviations from the Neyman-Scott
model at larger scales (which you may depict with the L-function) are caused by
larger-scale effects.

3.4.2. Implementation of the fit of ocand p

Programita follows basically the approach of Diggle 1983 to fit equation C1 to
your data, but uses the L-function instead of the K-function. Programita allows
you to fit your data to a Neyman-Scott process by fitting the g-function, the L-
function, or both, the L-function and the g-function simultaneously to the
theoretical functions. The simultaneous fit of the g- and L-function usually works
best since the g-function is more sensible at smaller scales, and the L-function at
larger scales.

Programita minimizes three error functions with tuning constants g, #max, and c:
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rmax rmax

error L = Z[]:(r)c —L(r,o,p)T Z [[2(1’)‘7 I’
r=r0 r=r0
rmax . . . rmax . . C3
error_g = Y1200 ~grop)F ) YIgey (D
r=r0 r=r0
error_Lg = \/ error _g*error L

that measure the discrepancy between model and data. The constant 7y is the
minimal scale of the fit, 7. the maximal scale of fit, and ¢ a power transforma-
tion.

The error function error g (or error L) gives the fraction of the total sum of
squares of the transformed empirical g-function (or L-function) which is not ex-
plained by the model. The error functions are normalized to make them compa-
rable among fits with different adjustment intervals (7, 7max) and data sets and to
facilitate construction of confidence intervals around the estimates of o and p.

3.4.3. Selection of the tuning constants

An immediate question is how to choose appropriate values for the tuning con-
stants. The first choice for the minimal scale is 7y = 1, however, if strong small-
scale effects (e.g., repulsion) overlay the clustering, one may select a minimal
scale o > 1 to omit interference of the small-scale deviation from clustering.

Note that Programita calculates the theoretical K-function using equation M2,
thus accounting for the “memory” caused by a possible departure from the theo-
retical K-function at scale ry.

65 An appropriate choice for the maximal scale of the

§ 3 analysis for fitting a cluster process is the scale
.E :: at which the g-function well approximates the
T B g g value 1. Remember, for g(7) = 1 you find points at
O S lismasmasaness  distance 7 as frequent as under a random pattern.
SouiTiealy z Thus for g(r) ~ 1 there is no aggregation at this

i scale. In the example on the left the choice would

g 4 be 7max = 20. The g-function is not very sensible to
& 32 \ larger-scale effects (i.e., effects larger than the
4 cluster size, for example clustering of the clusters

D 5015025 M35404550  at larger scales), therefore selection of the maxi-

Spatial scale 1 . .. .
) . mal scale rmax 1S not very sensitive if you use only
Figure C1. Selection of the
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‘f}f;ﬁglzl(rs)cfeﬁg rﬁ?fgrfrégfio%t'czo:r the g-function for ﬁtt‘ing‘the pgrameters oand p.
0.5 was used, and for fitting L(+) However, the L-function is sensible to such larger-
a transformation ¢ = 1. scale effects (figure C2, left), and if you use the L-
function for fitting the parameters o and p you
may restrict the range of 7.« (as done in fig. C1).
Alternatively, for depicting the peak of the L-function (which describes the
smaller-scale clustering you are interested in), you may select a transformation

with a large value of ¢ (figure C2 right).

A power transformation with ¢ > 1 weights larger values of L(r) or g(») more
than a transformation with ¢ = 1 (figure C2), whereas a transformation with ¢ < 1
weights larger differences less. Thus, to produce a fit that reproduces a peak in
L(r) or g(r) well you may select a larger value of ¢ (e.g., c = 4 as in figure C2

Fat of Mepman-Scott model to data Fit of Nepman-Scott model to data

7 Ftesiings — 1 019 7 Fi sattings—— EEL
58 el =100 56 PO =1 o= 100
g = i = {10000 E i oy = (00000
d 28 G ™ | 35,5243 2 28 O = |5 5283
" s [0 Cmin, = {0 D0ETD 14 100G, = [0.00570
: 100 mae = |0E7000 oA ot | 1000mas = |087000
0 = 40 & & 10 oghimize 7 L-and g 0 W 40 60 B0 X opimzs (% L-and g
Spataal wrade v ce=[05 | g-huhion Spateal icale 7 eg=[05 | g-lunction
Sy epif1o O L-hucthion S cp 40 L-lunction
4 \ Fitted paramelers " Firted paramatess
§ g= [139 : g= [133
a2 2 100 = 016270 3 g = [ax750
A2 \\_‘_‘_ﬂ g = |0mas A 2 — alp= |nozEs
| o | Irbespuelabion 1 Irbarprstataon
0 2 40 e 80 ioc | Clstersme (645 0 m 40 60 @0 gor | Chstersizs (646
Spatial szale ¥ Mo paentr 1827 Spatial woals v Mopsenlz:  |21.75
ok | Cloge | Save resuls | ok | Close | Save results |

Figure C2. Influence of the tuning constant ¢ (equation C3) on the fit of the L-function. A
weight ¢ > 1 weights larger values of L(r) stronger than smaller values, and for ¢ = 4 the fitting
procedure fits basically the peak of the L-function (at scales 0 < r < 20).

right). However, to fit intermediate values of L(r) or g(r) well, select ¢ < 1 (e.g.,
¢ = 0.5 for fitting g(r) in figure C2 left). A reasonable range for the power trans-
formation c is ¢ € (0.1, 4).

Programita allows you to repeat the fit with different selections of the tuning
constants and to visually control the fit. There is no harm to try few different
values of 7y, rmax, and ¢ in order to assess the extent to which the results are sen-
sitive to these choices.

3.4.4. The settings window for the fit

The settings window Fit of Neyman-Scott model contains the settings for the fitting
procedure and shows the results and the interpretation of the best fit. The win-
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dow "Fit settings" allows you to select:

e 1o, the minimal scale used to fit the data

®  7max, the maximal scale used to fit the data

®  Onin and Giax: the minimal and maximal value of o used in the fit.

e  100pmin and 100p0m,y: the minimal and maximal value of p used in the fit.
e ¢, and cp: the power transformation for the g- and L-function, respec-

tively

e whether you optimize only the g- or the L-function, or both simultane-

ously

After clicking the button "fit" Programita performs the fit with the settings
specified in the window "Fit settings". If you click the button "Zoom" Pro-
gramita determines the intervals (Omin, Omax) and (1000min, 1000m,x) that enclose
the area in parameter space with an acceptable fit (i.e., error_g, error_L, or er-
ror_gL <0.025). Next click "fit" and Programita runs a parameter search in the
optimized area in the parameter space. After termination of the parameter search,
Programita shows the error-surface of the fit (figure C4). The black area is the
region in parameter space with an unacceptable fit with error > 0.025. If the best
fit has an error > 0.025, Programita gives you a warning and continues with an

acceptable error of 0.05 instead of 0.025.

Fit of Heyman-Scolt model lo dala

7 Fhaelegs - ool & |7
56 m=1 [Foa=|100
4.2 Gomgny = (00000

g-fanchion

28 Tngn ™ | 55243
14 1000 mis = 000870
: 2 . 1000 = | 0LB7000
B M 40 &0 80 l0C oplimize (= |- and
Spatial scal ¥ leg=[05  © g-function
cL={1.0 " L-funchon
[ Filtesd paramelerns
g= [322
100p = (016270
alp= 001305
Initerpretation
O 20 40 &0 g0 1oc | Cluslersieer  |B4E
Spatial scale r Mo paterts: (1827

ok | Close | Save resuls |

L-faunston
= bk} W e LA

Figure C3. The window Fit of Ney-
man-Scott model to data that contains
the settings for the fitting procedure
(window "Fit settings") and shows
the results (window "Fitted parame-
ter'") and the interpretation of the best
fit (window "Interpretation").

If you are satisfied with the fit, you can safe the settings and results of your fit in
an ASCII file by clicking the button "Save results". This file will have the exten-
sion *.fit. To apply the Neyman-Scott cluster null model with the parameters
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determined during the fitting procedure click the button "ok". The window Fit of
Neyman-Scott model disappears and after clicking "Calculate index "Programita
starts with the simulations of the null model.

Note that Programita uses the parameters p and o N ‘E_“'""“ . "“"I ’“:‘_""'

. . . e ’s ive riumibser of ieplicabes
spemﬁgd in the window “Fitted pgrameters for the | . e .
simulation of the null model. This offers you the | ¢ Paten 1 fix. paten 2 random 7

I B coe - . ™ Random labeling 7
possibility to create artificial dat:'a sets with any | - ot e em 2 moves] 2
value of p and o you find appropriate. To save the | & Chster process ?

. . " T Togethe: Espanient= |1.00
artificial data sets enable the check box “Save null -
o - . .. . [T Only one poirt per cell 7| !
models” in the window containing the settings of 7 Gri e peripocrator:. B
the null model. I~ Heterogenecus Poisson ‘j
T Hardcoe ?
W [5ave nul models [rest

Figure C4. The error surface for the
zoomed parameter area. The x-axis gives
the parameter o, the y-axis the parameter
p. Note that the values of p (the y-axis)
are shown with increasing values from
top to bottom. Black: Non-acceptable fit
with error > 0.025. Spectral colors from
blue to magenta: increasingly poorer fit.

E [ ]
(M) 0025 = (0,025
error
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3.4.5.Constructing confidence intervals for cand p

The error functions error_g, error_L, and error_Lg give the fraction of the sum
of squares of the transformed L- or g-functions of the data not explained by the
fit. Therefore, confidence intervals for the estimate of the parameter o and p can
be estimated by determining the intervals ino and p for which the error is
smaller than a certain level of say, 0.025 or 0.01.

The data files with the *.fit extension contain a list with the parameter values
and the corresponding errors. You can use this data to produce a contour plot of
the error and constructing the confidence intervals for the estimates of o and p

(figure C5).

Figure C5. Contour plot of the

ol 5

_—onm error in dependence on the parame-
P P ters o and p of the fit for determi-
.15 £ e nation of confidence intervals for o
oozl “'w-;“\l\ and p. The confidence intervals for
0100 4 Prof — T an error < 0.012 are shown as bold
a [ fome | OB NS -8 intervals at the axes. The best fit is
“g o095 4 { o TN, indicated as red dot.
2 TSN\
€ oo Lol | N NN
= 0.0%0 TR | Fa O *\\r
- 1l '|:r.\|-|'|II |, e \\:'- \\ ey
o ..II.';\ Y ) '\. ™. N, \I'\."
: WA \ L IR AN N
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e
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3.4.6.Univariate cluster process (NS_1.res)

1)

Highlight the data file "adults real.dat" in window Input
datafile. This data set gives the location of adult trees at a
meter scale, but has a resolution of 1 centimeter.

select "List" in How are your data organized

select "List with coordinates, no grid" in Select modus of
data. A window opens asking you to provide a cell size. In-
sert "5.00". Thus, the cell size is 5m x 5m.

click the button "change" in set maximal radius rmax and set the
maximal scale r of the analysis to rm., = 50.

click button "Calculate index", Programita shows you the
pattern

L

'.=+'! LI
-
N

e ot B B R B i
*
*
]
*
.
Lo o o e o e e e

and calculates the O-ring function of the data.

To determine Monte Carlo confidence intervals for the Ney-
man-Scott null model enable the check box "Calculate con-
fidence interval" on the upper left. A window with set-
tings for null models appears, select "cluster process". A
window with a selection of cluster process null models ap-
pears, enable "univariate Neyman-Scott" and press ok.
Programita now calculates the g- and the L-function for r
= 1 to ry.x and the window Fit of Neyman-Scott models to data appears.
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Fit of Heyman-Scoll model to data
oE ﬂidﬂunu:u——ﬁ 2|
il m-|1_ Finan =|50
3% Crrir, =
25 Tman =
13 S L L s 1000min =
u 1 ] [ L] |'T 1 1 L] & lm_-
0 5 10152025303540 4550 | oplmize & hoth,L-and g
Spatial scale ¢ E " g- function
1.0 ™ L - hnction
48
4.
334
24
D 5 1015202530 3540 45 50
Spatial seals ¢

You can specify the tuning constants r o, ¥ pmax, and c for
the fit in the window "Fit cluster process". Visualization
of the g-function in the window w Fit of Neyman-Scott models to data
helps you to find the appropriate range ry — r pax- The g-
function approximates the theoretical wvalue for a random
pattern (g = 1) at scale r = 10. In practice, a good
choice for r; is more or less the double of this scale,
thus select rpy = 20. The default ro = 1 is appropriate
since no repulsion occurs at small scales, and the default
power transformations c = 0.5 for the g-function and c =1
for the L-function are reasonable starting values. To op-
timize simultaneously the g- and the L-function enable
"both, L- and g-function".

Click the button "fit" and Programita searches the parame-
ters of the Neyman-Scott model that simultaneously fits
the g- and L- function of your data best (red line: fit,
black line: data):

“Fit of Neyman-Scott model to data

o aern] | 1000mn = [DO0ETD
-

1015202530 35404550 | oplimize s both, L-and g
Fpatial soila ¥ 0§ " g-funclion

[P

1015202530 354045 50 | Clustersier 568
Spatial scale r HNoparents:  [23.49 |

/

5 0 15 20 25 30 ﬁi

I .
poor fit good fit

Programita automatically calculates initial intervals for

the two parameters o and p of the Neyman-Scott process.
The minimal and maximal coordinates for & (Ouins Onax) and p
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11)

12)

13)

14)
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(Pninr  Pmax) are shown in the box "Fit cluster process".
Programita uses 100 parameter values for p and o [equidis-
tantly distributed within the intervals (Guins Onax) and
(100*ppin, 100* prax) ] to find the parameters of the Neyman-
Scott model that simultaneously fit the g- and L- function
of your data best (See "Implementation of the fit ...").
The estimates 0f Opest Prest are shown in the window "Fitted
parameters", and the best fits of the g-and the L-function
are shown as red line in the two graphs on the left, your
data are shown as black 1line. Additionally, Programita
shows the deviation between data and fit (the error sur-
face, right figure) plotted in the o - p plane. The black
cell indicates the estimated values of o and p, dark blue
color indicates a small deviation between data and fit,
and colors with increasing spectral color indicate succes-
sively poorer fits.

The small graph below the deviation shows the wvalues of
the deviation for points that satisfy p02 = Prest oﬂm“,
plotted over the wvalue of o, and the red line is the an
error gL < 0.025 for an acceptable fit.

The points that satisfy ,002 = Phest Gﬁmm are shown as grey
cells. Remember that equation C2 implies that the value of
p02 may be estimated with higher precision that the values
of p and o separately. This plot helps you to control for
this effect.

To optimize the settings of the fit, you can manually
change the minimal and maximal coordinates for o (Ouins
Onax) and 100*p (100*pnin, 100* puax) 1n the window "Fit
cluster process". As help you may compare the current set-
tings of o and p (window "Fit cluster process") with the
estimated values Opest Poest (Window "Fitted parameters"),
and adjusting the new intervals only inside the area of a
good fit as indicated by the plot of the deviation. In the
example, the interval for o is (0.5, 7), and the interval
for 100*p is (0.01, 1):

15)

Alternatively, vyou can use the "Zoom" function of pro-
gramita. If you click the button "Zoom", Programita deter-
mines the intervals (Opin, Omax) and (100puin, 100pnp.x) that
enclose the area in parameter space with an acceptable fit
with error g, error L, or error Lg < 0.025. Next click
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"fit" and Programita runs another parameter search in the
optimised area of the parameter space (see figure C4).

16) You can save the results of the fit in an ASCII file
(click button "Safe results" and provide a data name). The
file will have the extension *.fit. The results file con-
tains a list with the parameter values and the error. You
can use this data for producing a contour plot of the er-
ror and constructing the confidence intervals for the es-
timates of o and p (figure C5).

17) Once you are satisfied with the fit, click "ok". The win-
dow Fit of Neyman-Scott models to data disappears and after clicking
"Calculate 1index" Programita continues with the simula-
tions of the Neyman-Scott null model for estimation of
confidence envelopes:
|: 5
| ik 7
i 1
p— i
= _HEL_ 1
The pattern of the data is shown on the left, and the
simulated patterns of the null models are show on the
right. After termination of the simulations, Programita
shows the results of the point-pattern analysis at the
right instead of the simulated patterns:

t 0. sing statistic (WMD) Undvariaie L fumetion (Ripley)

i 26

.04 [ 2]

A g MW

0.04 Ruﬂ\" =2 :

0.2 | 12

05 W 15 M 3 W B 4 &5 s PS5 W 15 M ¥ W B 4 4 s
Spatial seabe v feells] Spaiial seale ¢ feells]

18) The simulation of 99 replicates of the Neyman-Scot null
model with Opest = 2.888 and pPpese = 0.0023303 show that the
data are well within the confidence envelopes of the null
model. The left figure above shows the univariate O-ring
statistic and the figure on the right the univariate L-
function.

19) Note that the confidence envelopes of the L-function are

relatively wide for larger scales. This is because the L-
function is more sensitive at larger scales.
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3.4.7.Univariate cluster process and recruits (NS_2.res)

1)

10)

This example analyzes the spatial pattern of recruits of
example NS 4.res. We show that the recruits are clustered
at two different scales.

Highlight the data file "recruits.dat" in window Input data
file. This data set gives the location of recruits in cells
with a cell size of 1 m®.

select "List" in How are your data organized
select "Data are given as list in grid"
data.

click the button "change" in set maximal radius rmax and set the
maximal scale r of the analysis to r.x. = 30.

click button "Calculate index", Programita shows you the
pattern:

in Select modus of

£ .
& - -

and calculates the O-ring function of the data. Visuali-
zation of the data show that the recruits are clearly
clustered.

In a first step we investigate the small-scale clustering
of the recruits. To determine Monte Carlo confidence in-
tervals for a Neyman-Scott null model enable the check
box "Calculate confidence interval" on the upper left. A
window with settings for null models appears, select
"cluster process". A window with a selection of cluster
process null models appears, enable "univariate Neyman-
Scott" and press ok.

Programita calculates the g- and the L-function for r =1
to Imaxy and the window Fit of Neyman-Scott models to data appears.
You can specify the tuning constants rpin, Tmax, and c for
the fit in the window "Fit cluster process":

Select ryax = 1 and rg = 15 since we are interested in the
aggregation at small scales. To optimize simultaneously

the g- and the L-function enable "both, L- and g-
function".

Click the button "fit" and Programita searches the pa-
rameters of the Neyman-Scott model that simultaneously
fit the g- and L- function of your data best (red line:

fit, black line: data). We find

® Giest = 4.8 and pPrest = 0.000135 (some 33 parents)
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12)

13)
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The simulation of 19 replicates of the Neyman-Scot null
model show that the data are at small scales well within

the confidence envelopes of the null model
(NS _2 small scale.res), but the data are at larger scales
partly above the confidence interval (i.e., r = 13, 17-

20, and 24-27):

Univariaie O ring statistic (W-M)

0oz
§uz|
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o7

.I W M W 4 5 & T =W M W
Spatinl srale 1 jrells]

Next we 1investigate the clustering at larger scales
(i.e., r = 15 - 100). Repeat the steps 1 - 8 and select
Imax = 15 and ry = 100. The default power transformations
c = 0.5 for the g-function and ¢ = 1 for the L-function
are reasonable starting values. To optimize the g- and
the L-function simultaneously enable "both, L- and g-
function".
Click the button "fit" and Programita searches the pa-
rameters of the Neyman-Scott model that simultaneously
fits the g- and L- function of your data best (red line:
fit, black line: data). To optimize the parameter fit,
press the button "Zoom". Programita now determines the
probable range of the parameters. We find

® Opest = 14.4 and pPpest = 0.000095 (some 24 parents).
Press the button "ok" and then "Calculate index".
The simulation of 19 replicates of the Neyman-Scot null
model show that the data are for 1larger scales well
within the confidence envelopes of the null model
(NS 2 larger scale.res):

Unbrardste O-ring stathstlc (W-M)
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but as expected, recruits are significantly clustered at
small scales r = 1 - 10. Overall we find that the re-
cruits are clustered at two different spatial scales. To
adequately describe such a situation we would need a dou-
ble-cluster model where the parents events are not a ran-
dom pattern, but follow itself a Neyman-Scott process.
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3.4.8.Univariate cluster process and adult trees (NS_3.res)

1)

10)

11)

12)

This example analyzes the spatial pattern of adult trees
(which we already analyzed in example NS l.res), but now
at the same spatial resolution as the pattern of recruits
in the previous example (NS 2.res).

Highlight the data file "adults.dat" in window Input data file.
This data set gives the location of adult trees in cells
with a cell size of 1 m’.

select "List" in How are your data organized

select "Data are given as 1list in grid" in Select modus of
data.

click the button "change" in set maximal radius rmax and set the
maximal scale r of the analysis to ru.x = 100.

click button "Calculate index", Programita shows you the
pattern and calculates the O-ring function of the data.
The visualization of the data shows that the adults are
clearly clustered.

To determine Monte Carlo confidence intervals for the
Neyman-Scott null model enable the check box "Calculate
confidence interval" on the upper left. A window with
settings for null models appears, select "cluster proc-
ess". A window with a selection of cluster process null
models appears, enable "univariate Neyman-Scott" and
press ok.

Programita calculates the g- and the L-function for r =1
tO Imax = 100 and the window Fit of Neyman-Scott models to data ap-
pears. You can specify the tuning constants ruin, Tmax, and
c for the fit in the window "Fit cluster process":

Select rm.x = 1 and rp = 100 since we are interested in
the overall aggregation of the adults. The default power
transformations ¢ = 0.5 for the g-function and c¢ = 1 for

the L-function are reasonable starting values. To opti-
mize the g- and the L-function simultaneously enable
"both, L- and g-function".

Click the button "fit" and Programita searches the pa-
rameters of the Neyman-Scott model that simultaneously
fits the g- and L- function of your data best (red line:

fit, black line: data). To optimize the parameter fit,
press the button "Zoom". Programita now determines the
probable range of the parameters. We find
¢ Ot = 14.1 and pPrest = 0.000083 (some 21 parent
events) .

This estimates accord well with the results from example
NS l.res (which used a cell size of 25m® instead of 1m%
with Opest = 5%*2.88 = 14.4 and 23 parents. Note that these
estimates are strikingly similar to the estimates for re-
cruits at larger scales (i.e., a cluster size of some
29m, and some 24 parent events) obtained in the previous
example.

Before continuing with the simulation of the null model
select a ring width of 3 cells; otherwise the O-function
will be slightly jagged. Press the button "ok" and then
"Calculate index".

The simulation of 19 replicates of the Neyman-Scot null
model show that the data are well within the confidence
envelopes of the cluster null model (NS 3.res. However,
at scales r = 1 - 3 there is a tendency to a stronger
clustering than accommodated by the Neyman-Scott cluster
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null model which, however, is not significant:
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3.4.9. Univariate cluster process and dead trees (NS_3b.res)

1)

This example analyzes the spatial pattern of dead trees at
the same spatial resolution as the pattern of adult trees

(NS 2.res) and recruits (NS 3.res) in the previous exam-
ples.
Highlight the data file "dead.dat" in window Input data file.

This data set gives the location of adult trees in a reso-
lution of lcm.

select "List with coordinates, no grid"
data. A window opens asking you to provide a cell size.
sert "1.00". Thus, the cell size is 1m x 1m.

click the button "change" in set maximal radius rmax and set the
maximal scale r of the analysis to ry., = 100.

click button "Calculate index", Programita shows you the
pattern and calculates the O-ring function of the data.
The wvisualization of the data shows that the adults are
clearly clustered:

in Select modus of
In-

To determine Monte Carlo confidence intervals for the
Neyman-Scott null model enable the check box "Calculate
confidence interval" on the upper left. A window with set-
tings for null models appears, select "cluster process". A
window with a selection of cluster process null models ap-
pears, enable "univariate Neyman-Scott" and press ok.

Programita calculates the g- and the L-function for r =1
tO Ipax 100 and the window Fit of Neyman-Scott models to data ap-
pears. You can specify the tuning constants ryin, and

rmaxl
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c for the fit in the window "Fit cluster process".

Select r.x = 1 and rp, = 100 since we are interested in the
overall aggregation of the adults. The default power
transformations ¢ = 0.5 for the g-function and ¢ = 1 for

the L-function are reasonable starting values. To optimize
the g- and the L-function simultaneously enable "both, L-
and g-function".

Click the button "fit" and Programita searches the parame-
ters of the Neyman-Scott model that simultaneously fits
the g- and L- function of your data best (red line: fit,
black line: data). To optimize the parameter fit, press
the button "Zoom". Programita now determines the probable
range of the parameters:
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ok | Close | Save it |

We find Opest = 6.92 and Epest = 0.0002 (some 49 parents).
Interestingly, adult trees do not show the tendency to
double-clustering of adult trees (NS 3.res) or recruits
(NS 2.res).

We can compare the g- or K-functions of different patterns
through the compound parameter gig. This compound parame-
ter determines the steepness of the L-function at small
scales and the proportion ¢ of the study region covered by
the cluster (equation C2). We find that dead trees are
most clustered (their cluster covers some 11% of the study
region), followed by adult tress (their cluster covers
some 17% of the study region) and the less clustered are
recruits (their larger-scale cluster covers some 20% of
the study region).

Click the button "Calculate index". The simulation of 19
replicates of the Neyman-Scot null model show that the
data are well within the confidence envelopes of the clus-
ter null model (NS 3b.res):
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3.5. Univariate double-cluster process (DC)

3.5.1.Background

In some cases a univariate pattern may show clustering at two different scales.
Imagine a forest where the suitable habitat for a given species is heterogene-
ously distributed, perhaps due to different orientation on mountain slopes of
local differences in soil. This may cause a patchy (or clustered) distribution of
this species at a larger scale. However, a limited seed dispersal radius or much
localized safe sites (created by a dead tree) may cause a small-scale clustering
of the recruits, and as a result the overall pattern of the recruits follows a dou-
ble-clustered structure which cannot be well described by the simple cluster

process equation C1.

We will now introduce the double-clustered univariate Neyman-Scott process
which is an extension of the univariate Neyman-Scott process equation C1:

N 1—exp(—r° /40'22)
P>

K(r,o,,p,)
(DC1)

N exp(—r°/ 40'22)

g(r,oy,0,) 1

470’ p,

where p, is the intensity of the parent process, and o” the variance of the Gaus-
sian distribution that determines the locations of the offspring relative to the
parent. The simple cluster process equation DC1 assumes that the parents show
a random pattern whereas the double-clustered process assumes that the parents
follow itself the cluster process equation C1 with parameters o,” and p;. To not
mix up the two types of parents we define three types of points:

e parents

e type 1 points (= the offspring of the parents)

e type 2 point (= the offspring of type 1 points)
but analyze the univariate structure of type 2 points without explicit knowledge
of the locations of the of parents and type 1 points. The bivariate case where the
locations of the type 1 points are known, however, is discussed in a separate
section for bivariate null models (Bivariate double-cluster process for antece-
dent condition).

The univariate g- and K-functions expected under a univariate double-clustered
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Neyman-Scott process are:

N 1 exp(—r*/403) N 1 exp(-r>/40?,)
0, 4ro; o) 4ro’ (DC2)

sum

g22(raalap1ao-2,p2) =1

with o2 =0l +0;

sum

2 1-exp(-r*/407) - exp(-r° /402, )

sum

P> P (DC3)

Kzz(rao_ppppzao_z) = o

with o =0} +0;

with the four parameters:

e %, the parameter that gives the variance of the locations of type 2
points relative to their parents (= type 1 points).

e p», the intensity of the parents of the type 2 points.

e o, the parameter that gives the variance of the locations of type 1
points relative to their parents.

e p; is the intensity of the parents of type 1 points.

The first term in equation DC2 (= 1) describes the situation where the points of
the univariate pattern are independent from each other (i.e., type 2 points are not
clustered around their type 1 parents), the second term describes the effect of
clustering of type 2 points around their parents, and the third term describes the
compound effect of the clustering of type 1 points and the clustering of type 2
points around type 1 points. The variance Oum> is the combined variance that
describes the interaction of the clumping at the two scales ou » and ou 1.

If the parents are a random pattern (i.e., ou | = ) then o sum — 00 and conse-
quently, the third term disappears and equation DC2 collapses back to equation
DCI. If type 2 points are independent from their parents (i.e., 6% — o) it fol-
lows that o®um — o and equation DC2 collapses, as expected, back to a CSR

process with g(r) = 1.

Fitting of the observed g- and K-functions to a double-cluster process as de-
scribed by equation DC2 and equation DC3 could be done analogously to that
of the simple univariate cluster process, but fitting all 4 parameters simultane-
ously instead of two parameters simultaneously as done for fitting the simple
cluster process. This procedure is not yet implemented in Programita. However,
we would expect that the scale of clustering of the parents is larger than the
scale of clustering of type 2 points around their type 1 parents (i.e., o*; << 0%,
and consequentlyazsum << 0'22). Otherwise, a situation with o’ > o, does not
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really make sense because in this case the smaller-scale clusters of the parents
would basically function like one parent and the pattern can not be distinguished
from a simple clustered pattern.

If the parents show clustering at a larger scale and if the clustering of type 2
points around type 1 points occurs at a smaller scale, however, we can separate
the scales because in this case the contribution of the clustering of the offspring
to equation DC2 disappears for scales r above the cluster size 20,. Therefore, a
fit of the data to the expected g- and K-function of a simple cluster process
equation DC1 at larger scales » > 20, will reveal the unbiased parameters o; and
pi1 of the larger-scale clustering of the parents. To estimate the missing parame-
ters o3 and p, of the small-scale clustering of type 2 points, we therefore first
determine the (unbiased) parameters o7 and p; using a simple cluster process
and use in a next step equations equation DC2 and equation DC3 to obtain an
unbiased estimate of the smaller-scale clustering of the offspring.

We illustrate the analysis of double-clustered univariate patterns with three ex-
amples, three artificial data sets with
1. 0'21 >> 0'22

2. 021<<022

and the data of the recruits we already analyzed in example NS 2 and which
showed indications for double-clustering.

3.5.2. Double-cluster process ¢%; >> o%, (DC_1.res)

This pattern was created using a parents pattern with 136 points and parameters

e 0 =14.1, p; =0.000169 (some 42 parents)
and the parameters of the offspring were

o oy=4,p,=0.00054 (some 136 parents, i.e., all type 1 points are parents)
We analyze first the clustering of the pattern at larger scale using the simple
cluster process equation DC1 and apply then the double-clustered model to de-
termine the parameters of the small-scale clustering.

First step: univariate analysis at larger scales with simple
cluster model

1) Highlight the data file "DCl uni c.dat" in window Input data
file.

2) select "List" in How are your data organized

3) select "Data are given as list in grid" in Select modus of
data. A window opens asking you to provide a cell size. In-
sert "1.00".

4) click button "Calculate index", Programita shows you the
pattern and calculates the O-ring function of the data:
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For univariate analysis of this pattern at larger scale
enable enable the check box "Calculate confidence inter-
val" on the upper left. A window with settings for null
models appears, select "cluster process". A window with a
selection of cluster process null models appears, enable
"univariate Neyman-Scott" and press ok.

Programita calculates the g- and the L-function of the
data and the window Fit of Neyman-Scott models to data appears. You
can specify the tuning constants rpin, Trmax, and c for the
fit in the window "Fit cluster process".

To estimate the scale where the contribution of the small-
scale clustering to the double-clustered g-function disap-
pears, select rIpax 1 and r, = 15 and click the button
“fit”. Programita now shows the IL- and g-function of the
data and the fit at small scales:

13-
225
oG o e
8 114 4
g E 135
£ 78 &
B — 9
3.8-
g et e e E T e o 4.5
0 50 100 15¢ 0 50 100 150
Spatial scale ¥ Spatial seale x
The contribution of small-scale clustering to the g-

15 and the g-function
80. There-

function may disappear at scale r =
approximates the wvalue 1 roughly at scale r =

fore, select rm.x = 15 and r, = 80 for assessment of the
parameters of the large-scale clustering and click the
button “fit”. Programita now shows the L- and g-function

of the data and the fit at small scales:
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the button "Zoom" and

13) To optimize the parameter fit, press
ten “Fit”. Programita now determines the probable range of
the parameters:
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We find Orest = 13.66 and pPpese = 0.0001215 (some 30 par-

ents) .

Saving the results of the fit (DC uni c.fit) and plotting
the error surface shows that the fit determined well the

known parameter (o = 14) under which
ated. However, the number of parents
timated (30 instead of 42). This is
larger-scale clusters of the parents
as one single cluster.

the pattern was cre-
is slightly underes-
because some of the
overlap and function
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Second

1)

To simulate the process click in the windows Fit of Neyman-
Scott models to data “ok”, select a ring width of dr = 3, and
“Calculate 1Index”. Simulation of the Neyman-Scott null
model with larger scale clustering shows indeed good ac-
cordance at scales r > 15, however (as expected), the
small-scale clustering is not captured
(DC1 uni c largescale.res):
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step: univariate analysis with double-cluster model

Highlight the data file "DCl uni c.dat" in window Input data
file.

select "List" in How are your data organized

select "Data are given as list in grid" in Select modus of
data. A window opens asking you to provide a cell size.
Insert "1.00".

click button "Calculate index", Programita shows you the
pattern and calculates the O-ring function of the data.
For univariate analysis of this pattern assuming a dou-
ble-clustered process enable the check box "Calculate
confidence interval" on the upper left. A window with
settings for null models appears, select "cluster proc-
ess". A window with a selection of cluster process null
models appears, enable "Univariate double cluster".

The windows Fit of Neyman-Scott models to data and “Univariate dou-
ble-cluster Neyman-Scott” appear. Select the option “Uni-
variate” and provide the results of a univariate analysis
of pattern 1 at larger scale (r = 15 - 80):
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e 13.66 and 100ppest = 0.01215 (some 30 parents):
and click “ok” in the window “Univariate double-cluster
Neyman-Scott” and again “ok” in the window “Null models”.
Programita calculates the g- and the L-function for r =1
to Inax and the window Fit of Neyman-Scott models to data appears.
Because we fit the small scale structure of the pattern,
select rpx = 1 and rg = 50 and “g-function” (i.e., adjust
only the g-function) and click the button “fit”. (The L-
function is more sensitive at larger scales).
Programita now searches the parameters of the bivariate
Neyman-Scott model that simultaneously fits the g- and L-
function of your data best (red line: fit, black line:
data) .
Programita finds for the initial parameter intervals the
best fit

e o= 3.056 and 100p = 0.07084 (some 177 parents):

The results are reasonable estimates of the parameters
under which the pattern was created (o, = 4, p, = 0.00054
(some 136 parents). Programita estimates the cluster size
a bit too small (3.1 instead of 4) and the number of par-
ents a bit too high (177 instead of 136).

To find out whether this differences are due to uncer-
tainty in the estimates of the large scale clustering we
repeat the fit with the known parameters of the large-
scale clustering

e 14.1, 100p; = 0.0169 (some 42 parents):
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The estimate for the cluster size (o = 3.056) coincides

with the result from the previous analysis, but the number
of parents 1is closer to the known value (155 instead of
136) .
These results indicate that the estimation of the cluster
size 1s relatively insensitive to the uncertainty in the
previous estimate of the parameters of the large-scale
clustering, but that the estimate of the number of par-
ents depends more sensitively on the correct estimate of
the parameters of the large-scale clustering. Because of
the stochastic nature of the simulation process and the
finite number of points, there will be always some varia-
tion in the realized parameters in respect to the origi-
nal parameters under which the process was simulated.

3.5.3. Double-cluster process ¢% << ¢%; (DC_2.res)

This pattern was created using a parents pattern with 136 points and parameters

o1 =3.687, p1 = 0.0002416 (some 60 parents)

and the parameters of the offspring were

o, = 14, p» = 0.00054 (some 136 parents, i.e., all type 1 points are par-
ents)

We analyze first the clustering of the pattern at larger scale using the simple
cluster
termine the parameters of the small-scale clustering.

process equation DC1 and apply then the double-clustered model to de-

step: univariate analysis at larger scales with simple

Highlight the data file "DC2 uni c.dat" in window Input data
file.
select "List" in How are your data organized
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in Select modus of
In-

select "Data are given as list in grid"
data. A window opens asking you to provide a cell size.
sert "1.00".

click button "Calculate index", Programita shows you the
pattern and calculates the O-ring function of the data:
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For univariate analysis of this pattern at larger scale
enable the check box "Calculate confidence interval" on
the upper left. A window with settings for null models ap-
pears, select "cluster process". A window with a selection
of cluster process null models appears, enable "univariate
Neyman-Scott" and press ok.

Programita calculates the g- and the L-function of the
data and the window Fit of Neyman-Scott models to data appears. You
can specify the tuning constants rpin, TYmaxs and c for the
fit in the window "Fit cluster process".
To analyze the cluster structure of the patter select zrpax
= 1 and rp = 150 and click the buttons “fit”, “Zoom” and
“Fit”. Programita now shows the L- and g-function of the
data and the fit at small scales:
4.5 2004
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There is no indication that this pattern may be a double-
clustered pattern, the theoretical g- and L-functions (red
line) fit the g- and L-functions of the data (black lines)
well. We find
® Oiest = 17.4 and 1000pest = 0.01 (some 25 parents)

which approximate the known parameters of the larger-scale
clustering of the parents [o. = 14.1 and 1000pest = 0.0169
(some 42 parents)].

To simulate the process click in the windows Fit of Neyman-
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Scott models to data “ok”, select a ring width of 3 cells (dr =
3) and ™“Calculate Index”. Simulation of the Neyman-Scott
null model shows indeed good accordance at all scales
(DC2_uni c¢ largescale.res):
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Second step: univariate analysis with double-cluster model
Because the cluster size of the parents is much smaller than the
cluster size of the parents, the univariate analysis using the
simple cluster model equation DCl did not indicate the double-
clustering under which the process was created. To find out if
Programita reveals the known parameters of the large-scale clus-
tering under knowledge of the parameters of the small-scale clus-
tering of the parents we now analyze the pattern with the double-
cluster model.

1)

2)
3)

Highlight the data file "DC2 uni c.dat" in window Input data
file.
select "List" in How are your data organized
select "Data are given as list in grid" in Select modus of
data. A window opens asking you to provide a cell size. In-
sert "1.00".
click button "Calculate index", Programita shows you the
pattern and calculates the O-ring function of the data.
For univariate analysis of this pattern assuming a double-
clustered process enable the check box "Calculate confi-
dence interval" on the upper left. A window with settings
for null models appears, select "cluster process". A win-
dow with a selection of cluster process null models ap-
pears, enable "Univariate double cluster".
The windows Fit of Neyman-Scott models to data and “Univariate dou-
ble-cluster Neyman-Scott” appear. Select the option “Uni-
variate” and provide the parameters of the small-scale
clustering of the parents:

e 3.687 and 1000pest = 0.02416 (some 60 parents):
and click “ok” in the window "“Univariate double-cluster
Neyman-Scott” and again “ok” in the window “Null models”.
Programita calculates the g- and the L-function for r = 1
to rIuyax and the window Fit of Neyman-Scott models to data appears. Se-
lect rmax = 1 and r, = 50 and click the buttons “fit”,
“Zoom” and “fit”.
Programita now searches the parameters of the bivariate
Neyman-Scott model that simultaneously fits the g- and L-
function of your data best (red line: fit, black line:
data). Programita finds for the initial parameter inter-
vals the best fit

e o0 = 14.383 and 100p = 0.02506 (some 63 parents):
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The results are in excellent accordance with the known pa-
rameters. This result indicates that the information on the
small-scale clustering of the parents was hidden in the
pattern of the offspring but may only be revealed with si-
multaneously fitting the four parameters of the double-
clustered model.

3.5.4.Double-clustered recruits (DC_3.res)

Highlight the data file "recruits.dat" in window Input data
file. This data set gives the location of recruits at a me-
ter scale, but has a resolution of 1 centimeter.

select "List" in How are your data organized

select "List with coordinates, no grid" in Select modus of
data. A window opens asking you to provide a cell size.
Insert "1.00".

click button "Calculate index", Programita shows you the
pattern and calculates the O-ring function of the data:
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For univariate analysis of this pattern assuming a dou-
ble-clustered process enable the check box "Calculate
confidence interval" on the upper left. A window with
settings for null models appears, select "cluster proc-
ess". A window with a selection of cluster process null
models appears, enable "Univariate double cluster".

The windows Fit of Neyman-Scott models to data and “Univariate dou-
ble-cluster Neyman-Scott” appear. Select the option “Uni-
variate” and provide the results of a univariate analysis
of pattern 1 at larger scale (r = 15 - 100) (example
NS 2.res):

e o= 14.4 and 100p = 0.0095 (some 24 parents).

Click “ok” in the window “Univariate double-cluster Ney-
man-Scott” and again “ok” in the window “Null models”.
Programita calculates the g- and the L-function for r =1
to Imax and the window Fit of Neyman-Scott models to data appears.
Select rmax = 1 and rg = 100 and click the button “fit”.
Programita now searches the parameters of the bivariate
Neyman-Scott model that simultaneously fits the g- and L-
function of your data best (red line: fit, Dblack line:
data) .
Programita finds for the initial parameter intervals the
best fit

e o0 =4 and 100p = 0.02150 (some 54 parents)
To optimize the parameter fit, press the buttons "Zoom"
and “Fit”. Programita finds the best estimates:

e o0 = 3.83 and 100p = 0.02165 (some 54 parents)
Thus, the scales of clustering a different: there is a
large-scale clustering with o = 14 which may correspond
to a heterogeneity of the suitable habitat and a small-
scale clustering with o = 4 which corresponds to cluster-
ing of recruits inside the larger-scale clusters. The
fitted g- and L- functions approximate the data very
well:

Fit of Heyman-Scott model to data
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3.6. Hard-core process (HC)

3.6.1.Background

A hard-core process is the simplest extension of CSR to describe small-scale
regularity where points have a minimal distance ¢ (figure HC1). In this case the
g-function yields:

" 0 forr<o (HC1)
v =
& 1 forr>0o
and the K-function can easily be calculated using equation D4:
K(r) = I2ﬂr'g(r')dr': '’ ; =m’ -7, (HC2)
0
which yields
—r r<o
L(r)= (HC3)
r(,/1 —(é)z—l) r>0
r
A
SAT, o o
P o050 %0 ©
o) ONO, o
1000 6 @ "o P
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Figure HC1. (A) Hardcore pattern where the points have a minimal distance . This corresponds
to the case where the points have a finite size and are represented non-overlapping disks of ra-
dius ¢/2. (B) The theoretical L-function for a hardcore process given through_equation HC3.
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Figure HC1A shows an example of a pattern created by a hardcore process with
a hardcore radius ¢ = 4 which corresponds to non-overlapping disks with radius
2. The resulting L-function (equation HC3) is shown in figure HC1B. Note that
the entire departure from the expected L-function under CSR (i.e., L = 0) at
scales > o results from the hardcore and the "memory" of the L-function which
arises because the K-function is accumulative (equation HC2). Dixon (2002) and
Stoyan and Stoyan (1994) review further analytical formulas of the K- and g-
function under different hard-core processes.

A hard core null model does not allow two points to have a distance smaller than
the minimal distance 6. However, in real situation the probability that a point can
be found at distance d from another point may not be a step-function as assumed
under a hard-core null model (equation HC1), but rather a function that de-
creases with decreasing distance d, thus defining a soft-core null model.

3.6.2. Implementation of the hard-core null model

For numerical simulation of a univariate hard-core process provisional point are
placed (following the specific null model selected) and the distance d to the near-
est accepted point is determined. The provisional points are accepted if the
distance d > ¢ (i.e., no overlap of the disk of the two points), otherwise it is re-
jected.

3.6.3. Implementation of the soft-core null model

For implementation of a soft-core null model Programita uses a probability pyc
of a provisional point to be accepted that varies between 0 and 1, depending on
the distance d to the nearest (accepted) neighbor, and an exponent p that gives
the degree of "softness" (figure HC2):

d"? ford <6
d) = HC4
pHC( ) { 1 ford > 5 ( )

For p = 0, we obtain the hardcore model, and for p > 0 a soft core model.
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~

e corcsw=1i Figure HC2. The probability to accept a provi-
Lo \ S sional point in dependence on the distance d to its
nearest neighbor. For a hardcore null model the
point is rejected if d < J (i.e., the two hard-core
disks overlap). For a softcore null model the
probability pyc of acceptance is pyc = d'7.
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Figure HC3. Example HC 1.res. (A): pattern of the data file HC1.dat that was created with a
hardcore process and J = 4 (this corresponds to a disk with radius 2 cells in the window Hard
core null model). (B): The O-ring statistic for the pattern shown in (A) and confidence envelopes
for 19 simulations of a hardcore null model with radius of pattern 1 of 2 cells. (C) The L-function
for the pattern shown in (A) and confidence envelopes for 19 simulations of a hardcore null
model with radius of pattern 1 of 2 cells. The analyses of (B) and (C) confirm that HC1.dat is a
random pattern where each point has a hard core radius of 2. Note that (B) and (C) seems to
suggest 0 = 3 and not J = 4 as expected. This is because of the definition of scales r. For exam-
ple, cells with distance d = 4.45 belong to scale » = 4.

3.6.4.Hard core null model (HC _1.res)

1) highlight the data file "HCl.dat" in window Input data file. The
data file was created with a hardcore null model and a
minimal distance of 4 cells between points.

select "List" in How are your data organized

select "Analyze all data in rectangle" in Give modus of analysis
select "Data are given as list in grid" in Select modus of data
click button "Calculate index".

Enable the check box "Calculate confidence interval”™ on
the upper left. A window with settings for null models ap-

oYUl WIN
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pears. Select
checkbox "Hard core".
enable the checkbox
of pattern 1"
analysis) and provide the
hardcore radius of pattern
1. The minimal distance be-
tween two points is the dou-
ble of the hardcore radius.
Next provide the hardcore
radius and the exponent. The

"Radius
(univariate

example is for a hard-core
null model, therefore select
the exponent p = 0, click

"ok", and click the button
"Calculate index".

Programita applies now the
hardcore null model for cal-

culation of the confidence
envelopes shown 1in figure
HC3B.

3.6.5. Soft core null model (HC_2.res)

1)

2)

Same settings as in example HC 1,
Hard core null model an exponent p > 0 (p =
"Calculate index".

Click the button

"Pattern 1 and 2

random" and enable the

The window Hard core null model appears:

Hard core null model

Sl e p = | = I o= i
e i . Yy o
E pens ey N |
z o | P
5 -
= A .-r'_._l . hard core po= @i
™ P -
(TP B e, P |
LY ] d,

Distaner B paring

Hand core: points ans cincles and do not overlap
Soft core: with distance betesn pomts reduced

probability thant bwo points overlap
P Fiadusoipatisni]  [20 cels

[ Redusoipaienz |20 eols
Exponent p for pattesn 1: |um

but select in the window
0.5 in the example).
Programita applies now

the softcore null model for calculation of the confidence

envelopes shown below:

Univariate O-ring statistic (W-M)

0.02-

w 15 2o 2 W
Spatial scale r [cells]

0.016 ' : '
Zoo| | |, VWAE’"P AN
oo |
0.004{
W,
s

Note that the confidence envelopes show a soft core with a

reduced (but not zero)

than r = 3. The data set

probability of having points closer
"HCl.dat"

that was created with a

hard core model does not satisfy the softcore null model

at scales r = 1, 2, and 3.
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3.6.6. Heterogeneous Poisson and hardcore (HC_3.res)

This example shows the combination of the hardcore null model with the hetero-
geneous Poisson null model shown in example HP_1. Provisional points are only
accepted if they satisfy the condition for heterogeneous Poisson and the
condition for hard core simultaneously.

oUW

10)

highlight the data file "marcela.dat" in window Input data file
select "List" in How are your data organized

select "Analyze all data in rectangle" in Give modus of analysis
select a maximal radius of 15 cells in setmaximal radius rmax.
select "Data are given as list in grid" in Select modus of data
click button "Calculate index".

A window with settings for null models appears. Select
"Pattern 1 and 2 random" and enable the checkbox "Hard
core".

the window Hard core null model appears. Enable the checkbox

"Radius of pattern 1" (univariate analysis) and provide
the hardcore radius of pattern 1 (a value of 2). The mini-
mal distance of two points 1is the double of the hardcore
radius (i.e., 6 = 4). Provide the exponent p = 0 for hard-

core and click "ok". The window Hard core null model disappears.
enable the check box check box "Heterogeneous Poisson" in
the window Select a null model. The window Settings for heter. Poisson
appears. Select "Test only for pattern 1" (pattern 2 does

not exist in this example), and select a radius R=15 for
the moving window.
click button "Calculate index". Programita now calculates

the moving window estimate of the first-order intensity of
the pattern. Click "ok" at the message window and Pro-
gramita performs the simulations of the heterogeneous
Poisson null model for calculation of the confidence enve-
lopes shown below:

Univariate O-ring statistic (W-M)
0.016 /\
= 0012
£ !

= 0.008

S

0004

&

P 1 I ¥ 4 5 6 T 8 9 10 11 12 13 14 15
Spatial scale r [rells]

The confidence envelopes were constructed with 99 repli-
cate simulations of the combined heterogeneous Poisson and
hardcore null model. The data are almost within the confi-
dence envelopes, with 0;1(4) being only slightly above the
confidence interval.
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3.6.7.Combined cluster and hardcore (HC_4.res)

This example shows the combination of the hardcore null model with a univari-
ate Neyman-Scott cluster null model and continues the analysis of example
NS_4.res. The pattern of adult trees showed at a fine resolution of 0.25 m a
marked hard-core up to Im and a peak at some 2.5 m. Here we investigate
whether the hard core and the pear at 2m may be explained be a combined hard-
core and cluster null model. We analyze the bivariate pattern of adult trees and
recruits in example HC_7.res.

11)

12)

Highlight the data file "adults real.dat" in window Input
data file. This data set gives the location of adult trees and
recruits at a meter scale, but has a resolution of 1 cen-
timeter.

select "List" in How are your data organized

select "List with coordinates, no grid" in Select modus of
data. A window opens asking you to provide a cell size. In-

sert "0.5", thus using a cell size of 50cm.
click the Dbutton "change" in set maximal radius rmax, set the
maximal scale r of the analysis to ry.x = 50, and select a

ring width of dr = 3.

click button "Calculate index", Programita shows you the
pattern and calculates the O-ring function of the data.

To determine Monte Carlo confidence intervals for the
bivariate Neyman-Scott null model enable the check box
"Calculate confidence interval" on the upper left. A win-
dow with settings for null models appears, select "cluster

process". A window with a selection of cluster process
null models appears, enable "univariate Neyman-Scott" and
press ok.

Programita calculates the g- and the L-function for r =1

to rInax and the window Fit of Neyman-Scott models to data appears.
Select rpx = 15 and ry = 200. To optimize the g- and the
L-function simultaneously enable "both, L- and g-
function". Click the button "fit" and Programita searches
the parameters of the bivariate Neyman-Scott model that
simultaneously fits the g- and L- function of your data
best (red line: fit, black line: data).

To optimize the parameter fit, press the button "Zoom".
Programita now determines the probable range of the pa-
rameters. Next, press "fit" and Programita now searches
the best fit. We find Gpest = 29.5 and prese = 0.0000205.
Enable the check box “Hard core” and the window Hard core null
model appears. Enable the checkbox "Radius of pattern 1"
(univariate analysis) and provide the hardcore radius of

pattern 1 (a value of 2). The minimal distance of two
points is the double of the hardcore radius (i.e., & = 4).
Provide the exponent p = 0 for hardcore and click "ok".

The window Hard core null model disappears.

click button "Calculate index" and Programita performs the
19 simulations of the combined cluster and hard-core null
model :
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Univariaie O-ring statistic (W-M)
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Indeed, the combined hard-core and cluster null model de-
scribes the data well, only the peak at 2m (4 cells) re-
mains significant. Thus, adult trees show a strict repul-
sion and are at least 2 m apart.
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3.7. Recommendations for selection of univariate null models

In the following we give recommendations for the selection of appropriate null
models for univariate point-pattern analysis and we provide an exploratory step-
by-step protocol. Note that point-pattern analysis is a descriptive analysis. Even
if a particular null model describes your pattern well, it is not appropriate to con-
clude that the mechanism behind the null model is the mechanism responsible
for your pattern. Other mechanisms may lead to exactly the same pattern. How-
ever, point-pattern analysis helps to characterize your pattern and to put forward
hypotheses on the underlying mechanisms that should be tested in subsequent
steps in the field.

1.

Visualize the pattern, define a preliminary study region and plot the sec-
ond-order statistics L(r) and O(r).

If the size of your biological objects cannot be neglected (i.e., they are
large and do not overlap) you might combine a hard-core null model with
the null models suggested in the next steps. You may apply a hard or soft-
core null model if O(r) << A for scales 1- ry (compare figure HC3).

If there is no indication for strong aggregation (clearly visible clusters in
the pattern or a O(r) typical for virtual aggregation) use CSR as the null
model for detecting aggregation or inhibition. Virtual aggregation (large
scale clustering) is indicated by a constant O(r) over a range of scales,
and at this range O(r) is well above the intensity 4 of the pattern (e.g.,
Fig. 3B in Wiegand and Moloney 2004). Smaller-scale clustering is indi-
cated by a steep linearly increasing L(r) at smaller scales (e.g., example
NS _1). The cluster size is slightly below the value of » where L(r) is
maximal.

If step (3) indicates virtual aggregation (i.e. large clusters) exclude the
gaps (or use smaller rectangular sub-regions) and apply CSR only in the
sub-region without gaps (or in the smaller plot). Think about a biological
explanation for the heterogeneity encountered. Perhaps there are obstacles
in the study region, or clear environmental heterogeneity that prevent
points from occurring in the gap.

If there is a biological explanation for the heterogeneity encountered in
step (3) (e.g., clear differences in soil), you might map the environmental
factor and use this map to obtain an intensity function of a heterogeneous
Poisson process. Otherwise, you can use the pattern itself to estimate the
non-constant first-order intensity A using the moving window estimator
for simulation of a heterogeneous Poisson process null model. Alterna-
tively, if there is a surrogate pattern for the environmental heterogeneity
(e.g., the locations of a different, more common plant species that is hy-
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pothesized to be subject to the same environmental factor), use univariate
random labeling as the null model for testing whether your pattern is more
(or less) clustered than the control.

If there is no obvious environmental heterogeneity, your pattern may be a
realization of a cluster process. Use L(r) to obtain rough (initial) esti-
mates of the parameter p and o of a Neyman-Scott process and fit the pa-
rameters using the methods given in Diggle (1983). Use the estimated pa-
rameters p and o to simulate confidence envelopes for the Neyman-Scott
process null model. Clearly, there are a number of other point-processes
you might fit to your data. However, because of small number of points
and noisy data, you might not be able to statistically separate them.

If there is small-scale regularity and larger scale clustering, the expected
L-function for the Neyman-Scott process needs to consider the small-scale
regularity because the L-function is accumulative and conserves at larger
scales some “memory” on the small-scale regularity. This can be done
analogously to equation M1. Alternatively, one may use only the pair-
correlation function g (which has no memory) to fit the unknown parame-
ters p and o, but omitting the smaller scales r.
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4. Bivariate Null Models

Interpreting a bivariate K-function or O-ring statistic can be confusing because it
differs from the univariate case. In the univariate case, visualization of the pat-
tern usually provides an intuitive idea of the first and second-order properties of
a pattern. However, in the bivariate case we analyze the spatial relation between
two spatial patterns at different spatial scales where each pattern individually
may have a complicated spatial structure. Confusion may also arise because
there is not one simple and intuitive null model such as CSR, and because a null
model based on CSR (i.e., randomization of both patterns) leads to an inadequate
test for absence of interaction between the points of bivariate patterns.

For bivariate patterns, three conceptually different null models correspond to an
absence of interaction between the two types of points:

e Independence assumes that the two patterns were generated by two in-
dependent processes (e.g., one process generated the locations of shrubs,
and the other process generated the locations of grass tufts). Thus, the
expected absence of interaction between the two types of points corre-
sponds to an absence of interaction between the two patterns.

e Random labeling assumes that both patterns were created by the same
stochastic process (or were subject to the same constraining factors), and
that the labels (or "marks") are randomly distributed among the locations
of the joined pattern. Thus, the absence of interaction between the two
types of points corresponds to an absence of spatial correlation in the oc-
currence of the labels.

e Antecedent condition assumes that the two types of points were created
in sequence (e.g., adult trees did not change during the development of
recruits). Creation of pattern 1 occurred independently on pattern 2 (be-
cause it did not yet exist) but creation of pattern 2 may be influenced by
presence of points of pattern 2. Therefore, under an antecedent condition
the null model needs to conserve the locations of pattern 1 and a specific
hypothesis on the null model for pattern 2 needs to be formulated. In the
simplest case the null model for pattern 2 is a CSR process where the ex-
pected absence of interaction between the two types of points corre-
sponds to an absence of facilitation or competition exerted by type 1
points over type 2 points.

Departure from independence indicates that the two processes display attraction
or repulsion, regardless of the univariate pattern of either group by itself whereas
the interpretation of departure from random labeling is more complicated. The
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distinction between independence and random labeling requires some care and
consideration (Dixon 2002). When there is no relationship between two proc-
esses, the two approaches lead to different expected values of Ki(7) and O1,(7),
and to different procedures for generating null models (Goreaud and Pelissier
2004). Assessment of departure from random labeling is conditional on the uni-
variate structure of the joined pattern whereas assessment of departure from in-
dependence is conditional on the univariate structure of the component patterns.

Since bivariate point-pattern analysis investigates the relation of points of pattern
2 in respect to points of pattern 1 one may specify only the null model for the
stochastic process that created pattern 2, but keep the locations of pattern 1 fixed
(antecedent condition). This approach need to be used in cases where pattern 1
was unchanged during the creation of pattern 2. An example of such an
antecedent condition is seedlings in relation to adult trees. Another case where
one may keep the locations of pattern 1 fixed and specify only a null model for
pattern 2 is the relation between shrubs (fixed) and grass tufts. In this case the
null model distributes grass tufts at random in the area not occupied by shrubs.
Departure from the null model (e.g., there are more tufts in the neighbourhood of
shrubs than expected under this null model) may indicate facilitation. Because a
null model with an antecedent condition specifies only the null model of the sec-
ond pattern, all univariate null models (e.g., heterogeneous Poisson, hard core,
Neyman-Scott cluster null model) may be used. In this antecedent condition is a
hermaphrodite null model with characteristic of a univariate null model (i.e.,
only pattern 2 is simulated whereas pattern 1 remains unchanged) and with char-
acteristic of a bivariate null model (the statistic of interest is the bivariate L-
function or the bivariate O-ring statistic, i.e., the relation of type 2 points to type
1 points is analyzed).

The expected values of the bivariate g- and L-functions under independence are
gio(r) = 1 and Lix(r) = 0, whereas the expected values of the bivariate g- and L
functions under random labeling are determined by the spatial structure of the
univariate joined pattern, thus Li2(7) = Li2.1+2(r) and g12(r) = g1+2.1+2(7). Failure
to distinguish between random labeling and independence may lead to the analy-
sis of data by methods which are largely irrelevant to the problem at hand
(Diggle 1983). Random labeling and independence are equivalent only if all the
component processes are homogeneous Poisson processes.

Random labeling offers a number of ways for investigating the spatial structure
of a bivariate pattern in detail. In the section "bivariate random labeling" we will
present and interpret the different variants of random labeling.

If the null hypothesis to test is absence of interaction between the two types of
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points, the nature of the data and phenomena under study (i.e., whether the proc-
esses that created pattern 1 and 2 acted simultaneously [independence] in se-
quence [random labeling] or antecedent condition) provide guidelines for the
selection of independence or random labeling as appropriate null model (see e.g.,
Goreaud and Pelissier 2004). In some cases, the nature of the data and the biol-
ogy of the species involved may make the choice between random labeling and
independence relatively straightforward. In other cases, however, this may be
difficult and open to debate and interpretation and other more specific null mod-
els may be used instead.

Beside independence, random labeling and antecedent condition there are a
number of more complex bivariate point processes (e.g., bivariate cluster proc-
esses, or bivariate hard- and soft-core processes) that may be used to respond to
specific biological questions. For example, a bivariate Neyman-Scott cluster
process may be used to describe a clustered environmental heterogeneity that
affects both patterns in the same way.

4.1. Independence

4.1.1.Background

Testing for independence is not that straight forward than testing for CSR in the
univariate case because inferences are conditional on the second-order structure
of each pattern (Dixon 2002). This is because the theoretical values of K;,(7) and
O2(r) do not depend on CSR of the component patterns and therefore no as-
sumption can be made about models for either of the component patterns. Thus,
the null model of CSR is not appropriate to test for independence; the separate
second-order structures of the patterns need to be preserved in their observed
form in any simulation of the null model, but one has to break the dependence
between the two patterns. One way of achieving this is by simulations that in-
volve random shifts of the whole of one component pattern relative to the other.
In practice, a rectangular study region is treated as a torus where the upper and
lower edges are connected and the right and left edges are connected.

We present three examples for the application of the toroidal shift null model,
one based on real data, and additionally two artificially generated data sets to
demonstrate the ability of this null model to detect known departure from inde-
pendence.
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4.1.2.Example Indep_1.res

1)

U WN

highlight the data file "Al.dat" in window Input data file. The
two patterns are disturbances observed at a plot of south-
ern German grassland, mapped is a 10m x 10 m area with a
resolution of 100 x 100 cells. The points of pattern 1
(read) are cells with ant disturbances and the points of
pattern 2 (green) are cells with rabbit disturbances:
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Note that each of the two patterns,
shows marked clustering.

select "List" in How are your data organized
select "Analyze all data in rectangle" in Give modus of analysis
select "Data are given as list in grid" in Select modus of data
click button "Calculate index".

Enable the check box "Calculate confidence interval" on
the upper left. A window with settings for null models ap-
pears. Select "Toroidal shift".

click "Calculate index". Programita now performs the simu-
lations of the independence null model and determines the
confidence envelopes.

The confidence envelopes of the bivariate O-ring statistic
for the toroidal-shift null model reveal independence of
the two types of disturbance, although the patterns show
certain non-significant tendencies to repulsion at smaller
scales r = 1, 2 and attraction at scales r = 13 - 17. The
tendency for repulsion at small scale arise because it was
difficult in the field to recognize cells with both, ant
and rabbit disturbance and some cells with ant and rabbit
disturbances my actually be mapped as cells with rabbit
disturbance only. As a consequence, the bivariate O-ring
function depicts a tendency to repulsion:

taken individually,



90 USER MANUAL FOR PROGRAMITA

Bivariate O-ring statistic (W-M)
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4.1.3.Example Indep_2.res

This example corresponds to a situation where creation of pattern 1 was not in-
fluenced by pattern 2, but points of pattern 2 experienced facilitation from point
of pattern 1. We used a simple attraction process to simulate the points of pattern
2 in dependence on a given pattern 1 that was previously created by a CSR proc-
ess. The probability p.«(d) to accept a provisional point of pattern 2 with a near-
est neighbour of pattern 1 at distance d is:

1—(%)1" ford <o
0 ford >¢6

Pu(d) = (Indep1)

where ¢ = 6 and p = 0.1 in our example. This process is a sort of "inverse" soft-
core process; compare equations (Indepl and Indep2). Note that the points of
pattern 2 are, as a result of the non-random creation process, aggregated at scale
r=1.

1) highlight the data file "attractionl.dat" in window Input
data file. Pattern 1 is a random pattern and pattern 2 was cre-
ated with an explicit aggregation mechanism in respect to
pattern 1: random provisional points of pattern 2 were
only accepted if they had a nearest neighbor of pattern 1
at distance d £ 6 (i.e., 6 = 6), and the probability of
acceptance increased with decreasing distance d to a point
of pattern 1 (equation Indepl):
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The univariate analyses show that pattern 1 is indeed a
random pattern, whereas the univariate structure of pat-

tern 2 shows (a weak but) significant aggregation at scale
r=1.

select "List" in How are your data organized

select "Analyze all data in rectangle" in Give modus of analysis
select "Data are given as list in grid" in Select modus of data

click button "Calculate index".

Enable the check box "Calculate confidence interval" on
the upper left. A window with settings for null models ap-
pears. Select "Toroidal shift".

click "Calculate index". Programita now performs the simu-
lations of the independence null model and determines the
confidence envelopes:
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The toroidal shift null model that test for independence
of the two patterns is rejected for spatial scales r = 1-
3. There are more points of pattern 2 at distances r < 3
than expected under independence. Thus, application of the
null model for independence reveals the a priori known at-
traction at smaller scales. The distance dependent prob-
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ability of acceptance of an provisional point is paec (d)
0.16 for d = 1, but for d = 4 it decreased to pace(d)
0.04. Therefore the aggregation mechanism is weak and non-
significant at nearest neighbour distances d >3.

9) This example illustrates the difficulty to predict the
second-order characteristics of a bivariate pattern visu-
ally (pattern 1: random, pattern 2: random but weak aggre-
gation at scale r = 1 and attraction of pattern 2 to pat-
tern 1 at scales r = 1, 2, and 3).

4.1.4.Example Indep_3.res

In this example we used a bivariate soft-core process to simulate repulsion of
points of pattern 2 in relation to points of pattern 1 that were previously created
by a CSR process. The parameters of the bivariate soft-core process are: radius =
3 and exponent p = 5 (for pattern 1), radius = 3 and exponent p = 5 (for pattern
2), and the exponent for repulsion of pattern 2 by pattern 1 was p = 0.1. Thus,
points of pattern 2 are placed at random with respect to already accepted points
of pattern 2, but the probability puc(d) to accept a provisional point of pattern 2
with a nearest neighbour of pattern 1 at distance d is:

d"? ford<é8
d) = Indep2
Puc(d) U ford s S (Indep2)

where 6 = 3 +3. Note that the univariate analysis of pattern 2 reveals aggregation
at scales » = 1 - 5 which is a result of is non-random creation process.

1) highlight the data file "repulsionl.dat"™ in window Input data
file. Pattern 1 is a random pattern and pattern 2 was created
with an explicit repulsion mechanism: random provisional
points of pattern 2 were only accepted if they had a near-
est neighbor distance of at least & = 6 to a point of pat-
tern 1 and the probability of acceptance decreased with
increasing distance to a point of pattern 1 (equation In-
dep?2) :
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The univariate analyses show that pattern 1 is indeed a
random pattern, whereas the univariate structure of pat-
tern 2 shows aggregation at scale r = 1 and 3. Note that
the aggregation of pattern 2 is an indirect effect induced
by the repulsion to pattern 1 (i.e., points of pattern 2
had are squeezed in gaps of pattern 1).

select "List" in How are your data organized

select "Analyze all data in rectangle" in Give modus of analysis
select "Data are given as list in grid" in Select modus of data
click button "Calculate index".

Enable the check box "Calculate confidence interval" on
the upper left. A window with settings for null models ap-
pears. Select "Toroidal shift".

click "Calculate index". Programita now performs the simu-
lations of the independence null model and determines the
confidence envelopes:

Bivariate O-ring statistic (W-M)
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The toroidal shift null model 1is rejected for spatial
scales r = 1-4. There are less points of pattern 2 at dis-
tances r < 5 than expected under independence. Thus, ap-
plication of the null model for independence reveals the a
priori known repulsion at smaller scales.
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4.2. Bivariate random labeling

In the case of random labeling we ask not about the interaction between two
processes, but we investigate whether or not the labels "type 1" and "type 2"
have a random structure within the given spatial structure of the joined pattern.
Numerical implementation of the random labeling null model involves repeated
simulations using the fixed n; + n, locations of pattern 1 and 2, but randomly
assigning “case” labels to n; of these locations (Bailey and Gatrell 1995). There-
fore, the expected bivariate g- or L-function under random labeling is the uni-
variate g- or L-function of the joined pattern.

(Goreaud and Pélissier 2004) discuss the differences between the null hypotheses
independence and random labeling and derive rules for the appropriate use of
these null models if the researcher wants to test for absence of interaction be-
tween the two types of points. If the two types of points correspond to two
"populations" whose specific spatial pattern can a priory be the result of differ-
ent processes (e.g., plants of different species), then the expected absence of in-
teraction between the two types of points corresponds to an absence of interac-
tion between the two populations. On the other hand, if the two types correspond
to some events affecting a posterory the individuals of a single "population”
(e.g., tree dead or disease spread), then the absence of interaction between the
two types of points corresponds to an absence of interaction in the occurrence of
these events.

There are several variants of random labeling which each valuate different bio-
logical effects. In the following we will provide interpretations for these variants.

4.2.1. Different possibilities to asses departures from random labeling

Under random labeling both component patterns taken separately represent “ran-
dom thinning” of the joined pattern, and from their definition, K-functions and g-
functions are invariant under random thinning. Therefore we would expect that

g12(r) = g21(r) = gni(r) = gaa(r). (RLT)

Because the component patterns taken separately are “random thinning” of the
joined pattern, we expect additionally the identities:

glz(l”) = g1+z,1+2(r)
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g12(r) = g1142(r) (RL2)
221(r) = g2,1+2(7)

where "1+2" symbolizes the joined locations of pattern 1 and 2. Equation RL1
suggests that a useful way of investigating departures from random labeling is to
assess the significance of differences amongst estimates of g12(7), g21(7), g11(7),
and gn(r) (Bailey and Gatrell 1995). Using differences instead of g- or K-
functions has the advantage that the expected value under random labeling is
always zero, whereas the univariate g- or L-function of the joined pattern (which
is the expected value under random labeling) can have any shape.

The expectation g12(r) = g1.1+2(7) (equation RL2) suggests assessment of the sig-
nificance of the quotient g1,(7)/g1.142(7). The expected value of this quotient un-
der random labeling is gi2(7)/g1.1+2(7) = 1.

The advantage of using differences or quotients is that the results are easier to
visualize and interpret because the expected values under random labeling are
zero for differences and one for quotients. Additionally, the analysis of the dif-
ferences and quotients allows deeper insight into the relation of the two patterns
because each pairwise difference or quotient evaluates different biological ef-
fects. The difference g, (r)—g,,(r) for example evaluates whether points of
type 1 tend to be surrounded by other points of type 1, while g, (r)—g,,(r)
evaluates whether one pattern is more (or less) clustered than the other (Dixon
2002).

In order to properly interpret these differences and quotients, we go back to the
grid-based definitions of the bivariate g-function (equation I8). Note that the
same arguments presented here for the g-function are also valid for K-functions,
the only difference is that the rings have to be replaced by circles.

The bivariate O-ring statistic and the g-function are estimated with:

, i Z Points,[R/",(r)]
(’jlvg (r)=g,(r)—= M (KL

2 ! iArea[R{; ("]

ny iz

where R"ix(r) is the ring with radius » and width w centered on the kth point of
type 1, n; is the total number of points of type i in the study region of area 4, the
operator Pointsj[X] count the points of type j in a region X and the operator
Area[X] counts the number of cells in the region X. The bivariate O-ring statis-
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tic relates the average number of type 2 points in rings with radius » centered in
type 1 points (nominator of equation RL3) to the average number of cells of
these rings (denominator of equation RL3), thus it calculates the average number
of points per area (if a cell is the unit area).

We introduce the following definitions:

Py(r)= 1 Z Points  [R}} ()] (RL4)

1y k=1

is the average number of type j points in rings with radius » centered in type i
points, and

A0 =+ Z Area[R) (r)] (RL5)

i k=1

is the average number of cells in rings with radius » centered in type i points.
With this definitions, equation RL3 simplifies to O)5(r) = P,(r)/ A, (7).

In the bivariate case (i.e., i # /), the term n; P; gives the total number of ordered
pairs of type i and type j points. The number of ordered pairs is symmetric, thus:
ny Py = ny Py;. We will use this relation when deriving interpretations of the
differences and quotients of g-functions.

If the mean area of rings centered in points of pattern 1 is the same as the mean
area of rings centered in points of pattern 2 (i.e., A = 4) edge effects are equili-
brated and none of the two patterns has the tendency to occur closer (or further
away) to the edge of the study region. Note that the edge correction used in our
grid-based and numerical implementation (Wiegand and Moloney 2004) differs
from the analytical edge correction usually used (e.g., Goreaud and Pelissier
1999).

From the definition of 4; and P;; we derive the relations for the joined pattern:
A= (n1 Ay + ny A2)/(ny + ny) (RL6)
Piio, 112 = [n1 (P11 + P12) + ny (P2 + Pyy)]/(n + no) (RL7)

where P; 1+, = Pj; + P. Without loosing generality we can assume, when inter-

preting departure of a given quotient from the expected value under random la-
beling, that both patterns have the same number of points (i.e., n; = ny). This is
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because g- and K-functions are invariant under random thinning. However, the
number of points of the pattern determines whether the confidence envelopes are
wide (low number of points) or narrow (higher number of points), and the confi-
dence envelopes of a randomly thinned pattern with n; = n, will be wider than
that of the original pattern with n; << n,.

4.2.2.Variant 1, the bivariate g-function gi,

Some authors compare the bivariate g- or L-function to confidence envelopes
generated by randomization of the labels (e.g., Goreaud and Pélissier 2004). A
value of g,,(r) above the random labeling confidence envelopes indicates that
type 2 points are more frequent at distance » around type 1 points than expected
under the random labeling null hypothesis. This test does basically compare the
bivariate g-function g,,(r) to the univariate g-function g, .,(r) of the joined
pattern (see example RL._2), but it uses only n; randomly selected points out of
n; + ny points for construction of the confidence envelopes. For this reason the
confidence envelopes tend to be wide if n; << n, and narrow if n; >> n,. This is a
disadvantage of this assessment method.

To interpret departure of g,,(r) from random labeling we analyze the conditions
under which g,,(r) = &,,,,,,(r), thus

A :iiz[”1(Rl+Rz)+nz(P22+P21)] A
. A4 n, nA +n,A, n, +n,

= §1+2,1+2 (RLS)

If we assume that edge effects are equilibrated (i.e., 4; = 4>) and considering
identity he n; Py, = ny P, we find the solution

n
Bo =G oy 0P P (RL9)
which yields
R n R n n
gn=|( 1 )2g11+( 2 )2g22 (RL10)
n, +n, n, +n,

Therefore, variant 1 assesses departure from random labeling by comparing the
bivariate g-function with the density-corrected average of the two univariate g-
functions of the two component patterns. In the simplest case when both patterns
have the same number of points (i.e., n; = ny), we find that variant 1 compares
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the bivariate g, directly to the average of the two univariate g functions [i.e., gi2
= (0.5g11 + 0.5g22)], and for n; # n, the averaging is slightly more complex.

When using variant 1 we assess departure from random labeling relatively to the
structure of the univariate component patterns. If g,(r) > g,,,,,(r) type
points 2 are at scale r stronger correlated to points 1 than expected by the aver-
age aggregation of the two component patterns.

4.2.3.Variant 2, the difference gi2 - 911

The difference g,,(r)—g,,(r) evaluates whether type 1 points tend to be sur-
rounded by other points of type 1 (i.e., points of type 1 are correlated at scale 7).
With the definitions of equations R[4 and RL5 we find

:i[i_i] (RL11)

A B 4
A n2 A n n,

g1 (r)—g,(r) :i

4, n
Thus, a positive difference g,,(r)— g, () >0 indicates that rings with radius
around type 1 points contain relatively more type 1 than type 2 points. The term
"relatively" refers to the correction that considers the different intensities of pat-
tern 1 and 2 (i.e., dividing P;, by the total number 7, of type 2 points in the study
region, and dividing P;; by the total number n; of type 1 points in the study re-
gion). In other words, type 1 points are relatively more frequent at distance r
around type 1 points than type 2 points. Thus, a positive difference
g,,(r)—g,,(r) indicates that type 1 points are at distance r positively correlated
with other type 1 points.

4.2.4.Variant 3, the difference g1 - g1

A negative difference g,,(r)—g,,(r) indicates that type 1 points are more fre-
quent in rings around other type 1 points than in rings around type 2 points. With
the definitions of equations R[4 and RLS, the identity n; Pj» = ny P»; and the
assumption that edge effects are equilibrated (i.e., 4| = 4,) we find:

. . B, B
r)— r) = —_—— —_ RL12
g, (1)=&, (r) A A n Al[”lz nl] ( )

Thus, the difference g, (r)—g,,(r) 1is equivalent to the difference
g,,(r)—g,,(r) if edge effects are equilibrated.
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4.2.5.Variant 4, the difference g2 - 911

The difference g,,(r)— g,,(r) does not evaluate the correlation of type 1 or type
2 points directly, but evaluates whether pattern 2 is more clustered than pattern
1, conditional on the structure of the joined patterns. Thus, it evaluates whether
the given difference in the univariate clustering of pattern 1 and 2 is probable
under the overall clustering of the joined pattern.

Note that a given bivariate pattern may show significant departure from random
labeling, but the difference g,,(r)— g,,(r) may not depict this departure.

4.2.6.Variant 5, the difference g2 - 921

The difference g,,(r)—g,,(r) evaluates the symmetry of the bivariate g-
functions, i.e., whether or not type 2 points surround type 1 points in the same
way as type 2 points are surround by type 1 points. The difference

g, (r)— g, (r) is positive if:

b A > P A , (RL13)
A n, A, n

and considering the identity n; P, = n,P>) this is equal to 4, > A4;. Thus, the dif-
ference g,,(r)—g,,(r) evaluates directly whether the mean number of cells in
rings around type 1 points (= 4) is the same as the mean number of cells in rings
around type 3 points (= 4,). The mean number of cells in rings around type i
points (= 4;) will be smaller than the number of cells in a ring with the same ra-
dius because some points are located close to the boarder of the study region and
have incomplete rings (figure D1).

4.2.7.Variant 6, the quotient g1o/g; 1+2

A quotient g,,(r)/ g,,,,(r)< 1 indicates that type 2 points are less frequent in
rings around type 1 points than type 1 and 2 points in rings around type 1 points.
With the definitions of equations R[.4 and RL5 we find:

AR,
glz(”) — n, A1 _ P12 n, +n,
gl,uz(’”) A FB,+h, P,+B, n, - (RL14)

n, +n, 4,
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Equation RL14 yields one if n;P1, = nyPy;. Therefore testing g1o/g1142 < 1 is
equivalent to testing g1 - g12 > 0. If g12/g1.1+2 < 1, type 1 points are at distance r
positively correlated with other type 1 points. If gj2/gi 112 > 1, the two types of
points are positively correlated at distance r.

Equation RL14 indicates that estimation of g;»/g; 1+2 requires only counting the
number of type 1 and type 2 neighbors of type 1 points, but it does not require to
count empty cells as necessary for estimation of the bivariate g-functions. There-
fore, the value of the quotient does not depend on the univariate structure of the
joined pattern, but only on the number of pairs of points at different distances.

Note that the quotient in equation RL14 is equivalent to the definition of the
bivariate g-function for an irregularly shaped study region that comprises only
cells with points. This provides an elegant and simple method for estimation of
this quotient with Programita; the only change compared to calculation of
g,,(r) is the selection of the modus "Irregularly shaped study region" instead of
"All points in rectangle". Clearly, the input data need to be a list in grid ("data
are given as list in grid" in window select modus of data) and include only cells
with points.

4.2.8.Variant 7, comparing the quotients g12/g1 1+2 and g21/0z.1+2

We showed in the last section that the quotient gj2/g; 1+2 provides information on
departure from random labeling from the viewpoint of type 1 points (i.e., correla-
tion of type 1 points). Conversely the quotient g»1/g> 1+2 provides information on
departure from random labeling from the viewpoint of type 2 points. It is inter-
esting to compare both viewpoints, thus to assess whether of not the correlation
of type 1 to type 1 points and type 2 to type 2 points is symmetric. This question
can be answered by testing the difference

£, (r) _ £ (r)
él,nz(”) éz,nz(’”)

(RL15)
Simple arithmetic manipulations, including the identity n; P> = ny P,1, show that
the difference of equation RL15 is zero if

Py (r)+ Py(r) =B, (r)+ P, (r). (RL16)
Equation RL15 yields a positive difference if type 2 points have at distance r

more neighbors than type 1 points have neighbors. This indicates that type 2
points are mainly located in areas of higher point density whereas type 1 points
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are located in areas of lower point density. Thus, variant 7 evaluates intervention
of a first-order effect.

Similarly to the quotient gi2/gi.1+2, Programita estimates equation RL15 if you
select g5 - g»1 and the modus "Irregularly shaped study region" instead of the
modus "All points in rectangle" in the in window select modus of data.

4.2.9. Evaluation of the different variants of random labeling

We now summarize the biological effects and their interpretation which are de-
picted by the different variants of random labeling. Table 1 shows that there are
basically 5 different features of bivariate patterns that can be tested with bivari-
ate random labeling:

Correlation: Variants 6, 2, and 3 investigate whether type 1 points are
correlated with each other (conditional on the given structure of the
joined pattern). These variants of random labeling depict positive or
negative correlation of one type of points (or conversely negative or
positive between the two types of points) in a direct way and have a
straight-forward interpretation. Note that the correlation structure of the
two patterns might or might not be symmetric (e.g., type 1 points may
show correlation but type 2 points not). Programita computes variant 6
significantly quicker than the equivalent variants 2 or 3 because variant 6
does not require to count empty cells.

Interaction with heterogeneity of joined pattern: Variant 7 reveals in-
formation about the symmetry of the correlation of type 1 and type 2
points. A positive difference gi2/gi112 - g21/g2.1+2 indicates that type 2
points have at distance » more neighbours (= type 1 and type 2 points)
than type 1 points. Thus, type 2 points are mainly located in areas with
higher intensity of the joined pattern whereas type 1 points are mainly
located in areas of lower intensity. Thus, departure from random labeling
depicted with variant 7 indicates that the process that assigns the labels
to the points interacts with the heterogeneity of the joined pattern. This is
an interesting feature of random labeling that is of special interest e.g., in
case of fire (with a spreading mechanism that depends on the density of
plants) or spread of a tree disease (that depends on distance between
trees).

Correlation between patterns vs aggregation of component patterns.
Variant 1 compares the bivariate g-function to the average of the g-
functions of the univariate component patterns (which is the expected g-
function under random labeling). This test of random labeling may have
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wide confidence envelopes if n; >> n;.

Univariate structure of component patterns: Variant 4 compares the
aggregation (or regularity) of the univariate component patterns and re-
veal whether one pattern is more clustered (or less regular) than the
other, conditional on the structure of the joined pattern. This test does
not necessarily detect departure from random labeling.

Equilibrated edge correction: Variant 5 investigates if one pattern
tends to be closer to the boarder of the study region than the other (i.e.,
the edge correction is not equilibrated). Equilibrated edge correction is
an assumption for the interpretation of variants 0, 1, 3, and 4.
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Basic relations tested by the different variants of random labeling and interpretation. Pj(r) is the
average number of type j points in rings with radius » centered in type / points, A4;(7) is the aver-
age number of cells in rings with radius r centered in type i points, n; is the number of points of
pattern / in the study region comprising A4 cells. With this definitions, the grid-based estimate of
the bivariate g function yields g,(r) = (4/ny) Pa(r)/Ai(r).

Variant  Test Assumption  Basic relation tested Interpretation of test for scale
for with the variant r
interpretation

1 g12(r) < gr2,142(7) Ay =4, gn>b'gn+(1-bgn  Type 2 points are stronger
correlated than expected by
with b = ny/(n, +n,) the average aggregation of
the two component pat-
terns.
" Ay =4, 12> (g1t gn)2
ny=ny

2 g1 -gn(r) <0 — Pio/ny < Pyy/nyg Type 1 points are relatively
more frequent at distance r
around type 1 points than
type 2 points around type 1
points.

Type 1 points are positively
correlated with other type 1
points.

2a 21(r) - g(r) <0 — Py/ny < Pyy/ny Type 2 points are positively
correlated with other type 2
points.

3 ng(}") - gll(r) <0 Al :A2 P]z/nz < Pll/nl Equivalent to variant 2 lfAl =
4,

3a glz(}’) - gzz(r) <0 Al :A2 P21/n1 < Pzz/nz Equivalent to variant 2a if Al
=A2

4 22(r) - g11(r) >0 A =4, Pyy/ny > Piy/ny Pattern 2 is more clustered
than pattern 1, conditional
on the structure of the joined
patterns.

5 g12(r) - gu(r) >0 — Ay > A, Tests for equilibrated edge
correction. Mean number of
cells at distance » from type 2
points is larger than that of
type 1 points.

6 gi(r)/ga) <1 — Py/ny> P/ Equivalent to variant 2. Type
1 points are positively cor-
related with other type 1
points.

6a 21(N/g1a(r) <1 — Py1/n>Py/n, Equivalent to variant 2a.
Type 2 points are positively
correlated with other type 1
points.

7 g12(n/g110() - — Py + Py >Ppp+ Py Heterogeneity of the joined
221(1)/g2112(r) >0 pattern interacts with the
process that assigns the la-

bels.
Type 2 points are mainly
located in areas with high
intensity of the joined pat-

tern.
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4.2.10. Random labeling and grass tufts (RL_2.res)

This example analyzes the spatial pattern of grass tufts in a semiarid grass-shrub
steppe in Patagonia, Argentina. We analyze the pattern of Stipa speciosa (pattern
1) in relation to the joined pattern of all other grass species present at the study
plot (pattern 2, Poa ligularis, Stipa humilis, Stipa ibari, and Carex sp). The study
plot comprises a 133 x 91 cell rectangle with 20cm x 20cm cells, covering ap-
proximately a 27m x 18m area of the shrub-grass steppe.

We use the random labeling null model to investigate whether S. speciosa tufts
are randomly distributed among all grass tufts. We use random labeling to inves-
tigate the spatial structure of tufts because we hypothesize that the processes and
constrains that determine the locations of the grass tufts are the same for all spe-
cies and that the labels may depend on factors which are independent on those
which determine the location of the tufts.

1)

g W N

highlight the data file "RL2.dat" in window Input data file. The
locations of tufts of S. speciosa are pattern 1 (red

dots), and the tufts of the other grass species (P. ligu-
laris, S. humilis, S. ibari, and Carex sp) are pattern 2
(green dots):
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Figure RL1. Grass tufts in a Patagonian shrub-grass steppe. Red:
tufts of S. speciosa, green: all other gras tufts.

select
select
select
select
O-ring
plot at

"List" in How are your data organized

"Analyze all data in rectangle" in Give modus of analysis
"Data are given as list in grid" in Select modus of data
in box ringwidth a ring width dr = 3. For dr = 1 the
statistic for random labeling has a somewhat jagged
smaller scales r.
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click button "Calculate index".

Enable the check box "Calculate confidence interval" on
the upper left. A window with settings for null models ap-
pears. Select "Random labeling".

Provide "99" for the number of replicate simulations of
the random labeling null model

click "Calculate index". Programita now performs the simu-
lations of the random labeling null model. After termina-
tion of the simulations a window appears:

Select one option  close| C5E7]
' gl2 ﬂf‘gz‘l

 gl2gll g2l g2
rog2l-glt 7| C gi2-g22
g2 gl " gll-g22
" giz-g2i gl -al2

where can select the different pairwise differences be-
tween g- (or L-) functions which evaluate different bio-
logical effects.

enable gl2 which corresponds to univariate random labeling
and to the test for bivariate random labeling proposed by
Goreaud and Peélissier (2004):

Bivarinie random laheling with g-function (W.M)

L2
L1z

0246 B I81214 1610 2022 2426 20 30 32 34 36 30 4042 44 02 46 & 0002040618 2022 2406 28 30 F2 34 36 38 40 42 44

Spatial srale 1 foells] Spatial seale r [cells]

Figure RL2. Univariate (left) and Dbivariate random labeling
(right) . The confidence envelopes were constructed using 99 repli-
cate simulations of the null model.

Univariate random labeling corrects for an underlying en-
vironmental heterogeneity by using a control pattern (in
our example the locations of tufts of all other grass spe-
cies) which is more abundant than the pattern of cases
(the locations of the tufts of S. speciosa). Under the as-
sumption that environmental heterogeneity conditioned the
locations of pattern 1 and 2 in the same way, univariate
random labeling investigates whether there is aggregation
among tufts of S. speciosa.The environmental heterogeneity
in this system is given by shrubs, which cover in our plot
some 11% of the area (figure at the right with red: grass
tufts, black: dead and living shrubs). The analysis with
univariate random labeling shows that the aggregation of
S. speciosa is not significantly different from the over-
all degree of aggregation of all grass tufts.
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Figure RL3. Shrubs (black) and grass
tufts (red) in the Patagonian shrub-
grass steppe.

11) Bivariate random labeling with variant 1 shows that esti-
mates of g, (r) are below the confidence envelopes for
random labeling, therefore type 2 points are at scale r
stronger correlated than expected by the average aggrega-
tion of the two component patterns.

12) To show that random labeling compares the g;;—- and gio-
function to the univariate gj.p,142 of the joined pattern,
we plot the g-functions (black dots), the confidence enve-
lopes (lines) and the univariate gis;,142—function of the
joined pattern (white dots) in the same graphic. We find
that the confidence envelopes for g;;—- and g, are both
perfectly symmetric to gisz,1+2 which confirms our interpre-
tation of this test:
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Figure RL4. Univariate random labeling (left) and bivariate random
labeling with variant 1 (right) of the pattern shown in figure RL1.
Comparison of the confidence envelopes (lines) and the the univariate
J1+2,14+2 Of the joined pattern (open circles).

Note that the confidence envelopes of g;; are much wider
than the confidence envelopes of g;». This is because the
number of points varies greatly between patterns (n; = 395
and n, = 1285). Each randomization of pattern 1 occupies
only 24% of the total number of points, which leaves room
for many different spatial configurations that include the
actual configuration of pattern 1. On the other hand, the
confidence interval of g, is quite narrow since each ran-
domization of pattern 2 occupies 76% of the total number
of points. This leaves little room for differing spatial
configurations and the actual configuration of pattern 2
is not probable. This results point to a weak point of
variant 1: the number of points does greatly influence the
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confidence envelopes.

Figure RL4 right shows that the correlation of type 2
points is significant for almost all scales studied. This
suggests a first-order effect: the intensity of S. speci-
osa (pattern 1) tends to be higher in areas where the den-
sity of type 2 points (all other tufts) is lower. To 1il-
lustrate this result, we plot the (density-corrected)
intensity of type 2 points (i.e., the moving window
estimate with a moving window of R = 10) together with the
points of pattern 1. This figure depicts, in a spatially-
explicit way, the bivariate K-function, i.e., the number

of points of pattern 2 in circles with radius R = 10 (the
intensity) 1in relation to the points of pattern 1 (the
white dots). Points of pattern 1 are more frequently lo-

cated in areas with low intensity of pattern 2 (blue
area) :

Figure RL5. Intensity of pattern

2 (lowest intensity: blue, highest
intensity red, with incrementing
spectral colors) and points of pattern
1 (white dots).

Next we analyze the differences gl2-gll (variant 2) to in-
vestigate whether type 1 points are at distance r rela-
tively more frequent around type 1 points than type 2
points around type 1 points. The difference gl2-gll shows
significant negative correlation between pattern 1 and 2
at spatial scales r = 5 to 16 (which is equivalent to a
significant positive correlation among type 1 points).
Thus, points of pattern 1 tend to be more frequent in the
neighborhood (r = 5 to 16) of pattern 1 than points of
pattern 2. The inverse relation g2l1-g22 (variant 2a) shows
at spatial scales r = 1 to 27 significant positive corre-
lation among type 2 points. Thus, points of pattern 2 tend
to be more frequent in the neighborhood of type 2 points
than in the neighborhood of points of pattern 1. This re-
sult indicates that the spatial distribution of type 1 and
type 2 points shows a tendency to segregation: type 1
points are correlated to other type 1 points, and type 2
points are correlated to other type 2 points.
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Figure RL6. Variant 2 of random labeling that investigates correla-
tion among type 1 points (left) and type 2 points (right).

15)

Analogously to figure RL5 we plot the difference in the
number of type 2 and type 1 points in moving windows of
radius R = 10 together with the locations of points of
pattern 1. This plot is a spatially-explicit visualiza-
tion of Kij,-Kj;. It shows clearly that points of pattern 1
are more frequently located in areas which have in their
neighborhood more type 1 than type 2 points within a dis-
tance R = 10 (blue area).As a consequence, the difference
gl2-gll depicts at scale R = 10 a correlation among type
1 points.

Miileri- [yl peaiinky - wimabet (5 ) palinl i ciroles of v B - 55

Figure RL7. Moving window estimate
showing the difference in the number
of type 2 and type 1 points in circles
with radius R = 10 (lowest difference:
blue, highest difference: red, with
incrementing spectral colors). Pints
of pattern 1 are shown as white dots.

Testing the difference Bivariate randem labeling with g function (W-M)
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Testing the difference Bivariate random labeling with g-function (W-M)
gl2-g21 under random la- - —
beling (variant 5) re- —— —

veals that the bivariate = ™| _—

g-functions are symmet- b 0w
ric and that rings  ggm| -q‘“““*uuthhvﬁ

around type 2 points

ET T s e
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region than rings around Spatial scale 7 frells]

type 1 points.

To test wvariants 6 and 6a (which are equivalent to vari-
ants 2 and 2a) we repeat simulations of random labeling,
but with the option "Irregularly shaped study" region in-
stead of "analyze all data in rectangle", thus excluding
cells without points. To obtain variant 6 we select "gl2",

and to obtain variant 6a we select "g21".
Bivariate random lsheling with g-fanc tion (W-M)
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Figure RL8. Variant 6 of random labeling that investigates correla-
tion among type 1 points (left) and type 2 points (right). As ex-
pected, the results are identical to the results of variant 2 (figure

RL6) .

18)

19)

To investigate departure from random labeling in relation
to a possible first-order effect of the Jjoined pattern
(which was already indicated by wvariants 2, figures RL5
and RL7) we test variant 7. To obtain variant 7 we select
"gl2-g21" together with the option "Irregularly shaped
study" region; thus excluding cells without points. The
results of wvariant 7 reveal that the mean number of
neighbors of type 2 points exceeds at distances r = 3 - 11
the mean number of neighbors of type 1 points. Thus, type
2 points are mainly located in areas with high intensity
of the joined pattern:

Bivariate randem ke ling wiih g- functon (W M)
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Summarizing the results of random labeling for this data
set we find that
e edge correction is equilibrated (variant 5), none of
the patterns show a tendency to occur closer to the
border of the study region),
e the univariate structures of both patterns show the
same degree of aggregation (variant 4),
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type 1 points are correlated and type 2 points are
correlated (figures RL6 and RL8), and

points of pattern 2 occur mainly in areas of high in-
tensity of the joined pattern (variant 7).

20) Interpretation of these results include:

tufts of type 1 and type 2 show similar biological
characteristics, but a limited seed dispersal radius
leads to violation of random labeling because the
probability of occurrence of one type depends on the
neighbors. A limited seed dispersal radius may pro-
motes positive correlation of type 1 and type 2
tufts.

Univariate clumping of both patterns is not differ-
ent. This suggests that the seed dispersal mechanism
is the same for both types of tufts.

Points of pattern 1 occur mainly in areas of lower
overall tuft intensity. This result may indicate that
higher densities of type 2 tufts (which are >3 times
more frequent than tufts of pattern 1) in combination
with a limited seed dispersal radius leave few safe
sites for establishment of tufts of S. speciosa in
the surrounding of type 2 tufts and promotes addi-
tional the tendency to spatial segregation.
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4.2.11. Random labeling of adult and dead trees (RL_3.res)

This example analyzes the spatial pattern of dead and adult trees of one species
in a tropical rainforest. This example extends the analyses of examples NS 1,
NS _2, NS_3, and NS_4. We use the random labeling null model to investigate

whether dead trees are randomly distributed among the joined pattern of dead
and adult trees. This example is a classical example for application of the ran-
dom labeling null model.

1)

highlight the data file "RL3 1m" in window Input data file. This
data file gives the locations of adult trees and dead
trees of one species in cells of 1m® within a 500m x 500m
study region:
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Figure RL3. Adult trees and dead trees in
cells of 1Im,. Adult trees (red), dead trees

(green), and cells with dead and adult tree

(black) .

select "List" in How are your data organized

select "Data are given as list in grid" in Select modus of
data.

select "Data are given as list in grid" in Select modus of data
select in box ringwidth a ring width dr = 3. For dr = 1 the

O-ring statistic for random labeling has a somewhat jagged
plot at smaller scales r.

click the button "change" in set maximal radius rmax and set the
maximal scale r of the analysis to ru.x = 50.

click button "Calculate index", Programita shows you the
pattern and calculates the O-ring function of the data.
The visualization of the data (figure RL3) shows that the
adults are clearly clustered.

select "Analyze all data in rectangle" in Give modus of analysis
Enable the check box "Calculate confidence interval" on
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the upper left. A window with settings for null models ap-
pears. Select "Random labeling".

Provide "19" for the number of replicate simulations of
the random labeling null model

click "Calculate index". Programita now performs the simu-
lations of the random labeling null model. After termina-
tion of the simulations a window appears:

Select one option _clozs| (]

gl _ﬂf‘g?l

g2 g g2l -g22
 g2t-gll  gl2-g22
© gaz-git ogil-g22
 gl2-a2l g2l -agl2

You can select the different pairwise differences between
g- (or L-) functions which evaluate different biological
effects.

enable gl2 (variant 1) which corresponds to the test for
bivariate random labeling proposed by Goreaud and Pelis-
sier (2004):

Bivariate randons kb ling with g funetion (W-M)
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The bivariate gl2 is for scales r = 1 - 14 below the con-
fidence interval of random labeling which indicates that
the locations of dead trees are significantly correlated,
conditional on the Jjoined locations of adult and dead
trees. Especially, there is a minimal distance between
adult trees and dead trees of some 4 m which could be the
caused by non-overlapping canopies of adult trees. The in-
verse relation g2l is perfectly symmetric:

Bivariaie random labeling wiih g func tion (W. D)
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which indicates that adult trees are as well correlated at
scales r = 1 - 14. Consequently, the edge correction is
perfectly symmetric as indicated by the difference gl2-g21
(variant 5):
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Bivariate random Laheling with g Function (W-M)
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Note the difference in the scaling of the y-axis. The
maximal value for e.g., g2l is 12.5 whereas the maximal
value for the difference is about 0.2.

Analyzing the difference g22-gll (variant 4) indicates
that the degree of aggregation of both patterns is not
significantly different:

Bivariaie randeom labe ling with g-fuse tion (.5

g2-gll
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This result strengthens the previous results of examples
NS 2 and NS 3 that indicated that the overall clustering
of adults and recruits at a scale of some 30m is a result
of environmental heterogeneity that affects all 1life-
stages of the species in the same way.

To test wvariants 6 and 6a (which are equivalent to vari-
ants 2 and 2a) we repeat simulations of random labeling,
but with the option "Irregularly shaped study" region in-
stead of "analyze all data in rectangle", thus excluding
cells without points. To obtain variant 6 we select "gl2",
and to obtain variant 6a we select "g21":

Bivariste randam lshe ling with g-funcdon (W-M)
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We find that adult trees are positively correlated at
scales r = 1 - 3. This correlation is caused by the non-
overlapping canopies. Additionally, they show at all
scales a non-significant tendency to correlation and at
scales around r = 30, adult trees are weakly positively
correlated. This is the correlation to the next cluster.
The inverse relation g2l indicates that dead trees show
the same correlation at small scales than adult trees
which is caused by non-overlapping canopies, but they show
a weak positive correlation up to scales r = 12. Note that
variant 1 and variant 6 have a different interpretation
and different confidence intervals.
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To investigate departure from random labeling in relation
to a possible first-order effect of the joined pattern we
test variant 7. To obtain variant 7 we select "gl2-g21"
together with the option "Irregularly shaped study" re-
gion; thus excluding cells without points. The results of
variant 7 show that the correlation among dead trees and
the correlation among adult trees is symmetric and thus do
not provide indications of a significant first-order ef-
fect:

Bivarisie random babeling with g-functisn (W-M)
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4.3. Antecedent condition

If the two types of points were not created at the same time, but in sequence,
pattern 2 did not influence the development of pattern 1, but pattern 1 may influ-
ence the development of pattern 2. An appropriate null model for this biological
situation needs to consider the antecedent condition. For example, for investigat-
ing the relationship between adult trees (pattern 1) and seedlings (pattern 2) an
appropriate null model to test for competition (repulsion) or attraction (facilita-
tion) would be to randomize the locations of the seedlings (because they could
potentially be found at the entire study region) and to keep the locations of the
trees fixed. Randomizing the locations of the trees would be inappropriate be-
cause they did not change their position during the development of the seedlings.
Moreover, possible repulsion or attraction between seedlings and trees might be
obscured by randomizing the locations of the trees. Another example where one
may keep the locations of pattern 1 fixed and specify only a null model for pat-
tern 2 is the relation between shrubs (fixed) and grass tufts. In this case the null
model distributes grass tufts at random over the area not occupied by shrubs.
Departure from the null model (e.g., there are more tufts in the neighbourhood of
shrubs than expected under this null model) may indicate facilitation.

Because a null model with an antecedent condition specifies only the null model
of the second pattern, all univariate null models (e.g., heterogeneous Poisson,
hard core, Neyman-Scott cluster null model) may be used.

4.3.1. Trees and recruits (A_1.res and derivates)

The data for this example are adult trees and recruits of one species in a 500m x
500m plot of tropical forest. The spatial distribution of this tree species appears
clumped, which may be caused by environmental heterogeneity. To investigate
the relation between recruits and adult trees we proceed in several steps by con-
trasting the data to different null models. In the first step we use a null model
that fixes the location of the adult trees (i.e., an antecedent condition) and ran-
domize the location of the trees (thus ignoring a possible environmental hetero-
geneity). The assumption of this null model is that recruits could potentially be
found all over the study region. In a second step we consider the environmental
heterogeneity and use a Poisson null model for the distribution of the recruits.

1) highlight the data file "A 1.dat" in window Inputdata file. This
data set gives the location of adult trees and recruits at
a meter scale, but has a resolution of 1 centimeter.
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select "List" in How are your data organized

select "List with coordinates, no grid" in Select modus of
data. A window opens asking you to provide a cell size. In-
sert "5.00".

click the button "change" in set maximal radius rmax and set the
maximal scale r of the analysis to ru., = 50.

click button "Calculate index", Programita shows you the
pattern and calculates the O-ring function of the data:
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enable the check box "Calculate confidence interval”™ on
the upper left. A window with settings for null models ap-
pears. Select "Pattern 1 fix, pattern 2 random".

provide "99" for the number of replicate simulations of
the random labeling null model

click "Calculate index". Programita now performs the simu-
lations of the random labeling null model. The results
show that there are significantly more recruits in the r =

1 - 7 (1 - 35m) neighborhood than expected by a random
distribution of recruits (i.e., recruits are attracted by
adults) . Interestingly, there is also a departure from the

null model at scales r = 34 - 40 (170m - 200m) with more
recruits than expected. This attraction 1is due to the
patchy distribution of adults and describes the attraction
to the next cluster of adults.

Bivariate O-ring atatietie (W-M)
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To investigate the hypothesis that the attraction may be
partly a result from environmental heterogeneity that re-
stricts the tree species to occur in clusters, we repeat
the analysis of example A l.res but use a heterogeneous
Poisson null model for the recruits.

Select in the null model window "Pattern 1 fix, pattern 2
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random" and "heterogeneous Poisson". A window with set-
tings for the moving window estimate of the heterogeneous
Poisson appears:

Sellings for hetero, Poisson ﬂ
ll [F ove radies B of crcle
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i+ Test only for patbem 1
i Test only for patlem 2
" Test fonjoint pattem 1 and 2
¥ Show dizginbution

Select "Test only for pattern 1" (i.e., the intensity of
pattern 1 will be used to distribute points of pattern 2),
and select a radius R = 8 for the moving window. This ra-
dius is the radius with attraction.

click button "Calculate index". Programita now calculates
the moving window estimate of the first-order intensity of
the adults (right graph):
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Click "ok" at the message window. Programita now performs
the simulations of the heterogeneous Poisson null model
and shows the patterns of the simulated null models. After
termination of the simulations a graph appears showing the
O-ring function of your data and the confidence envelopes
of the heterogeneous Poisson null model:
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The results show that the heterogeneous Poisson null model
with a moving window radius R = 8 yields a too strong ag-
gregation at scales r = 3 -9 (15m - 45m) and does thus not
describe the data well.

In a next step we repeated the analysis with a radius of
the moving window of R = 15, which is the scale at which
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the Dbivariate O-ring statistic dropped to the expected
value (i.e., the overall density of recruits). This null
model describes attraction at small scales well, but leads
to repulsion at intermediate scales:

Bivarkate O-ring statbetic (WMD)
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We are thus not satisfied with these null models and
search for a better one. An alternative to describe the
common clustering of trees and recruits due to an hetero-
geneous environment is a bivariate Neyman Scott null model
where parent events (which represent the clusters of the
environmental heterogeneity) are randomly distributed and
pattern 1 and pattern 2 are the offspring from these par-
ents. The analysis of this null model is given in example
NS 4.res.

4.3.2.Shrubs and grass tufts (A_2.res)

In this example we extend the analysis of the grass-shrub steppe already started
in example R_2.res and investigate the relation between grass tufts and shrubs.
Because there is a hypothesized facilitation effect exerted by shrubs on grass
tufts we use a null model with antecedent condition.

In this example we need to perform the analysis in the matrix mode for several
reasons. First, the size of shrubs considerably exceeds the size of the grass tufts
and an approximating of shrubs with points (as usual in point-pattern analysis)
we would loose all information on the immediate neighbourhood relations be-
tween shrubs and grass tufts. Second, grass tufts do in general not grow inside
shrubs and therefore we can only accept one category per cell (i.e., a cell is either
empty, or covered by a shrub or by a grass tuft). Analysis in the matrix model
under antecedent condition allows us to distribute the grass tufts (which each
occupy exactly the area of one cell) randomly over the area of the study area not
occupied by shrubs.

1) highlight the data file "A 2.dat" in window Inputdatafile. This
data is a categorical map that contains cells occupied by
shrubs of all species (category 9) and cells occupied by
grass tufts of all species (categories 1, 2, and 3).

2) select "Matrix" in How are your data organized and select "Matrix
map" 1in Select modus of data. Provide the code numbers for the
two patterns in the window code numbers for patterns: 9 for pat-
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tern 1 and 1, 2, and 3 for pattern 2:

Give code numberz for patterns

Pattern1 |9 |9 [9 [g ll;ﬂ

Pattern2 |1 |2 |3 |3 ll

click the button "change" in set maximal radius rmax and set the

maximal scale r of the analysis to rp.x = 20. We are only
interested in smaller scales where facilitation may occur.
Click button "Calculate index", Programita shows you the

pattern and calculates the O-ring function of the data.
Shrubs are red and grass tufts are green:
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enable the check box "Calculate confidence interval" on
the upper left. A window with settings for null models ap-
pears. Select "Pattern 1 fix, pattern 2 random".

provide "99" for the number of replicate simulations of
the random labeling null model and click "Calculate in-
dex". Programita now performs the simulations of the null
model where grass tufts are randomly distributed over the
cells not occupied by shrubs and only one grass tuft is
allowed per cell.

Bivariute O-ring siwtirte (W-M)
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The results of the analysis show that the confidence in-
tervals are perfectly symmetric to the bivariate g-
function of the data. Thus, grass tufts are not closer to
shrubs than expected by the antecedent condition CSR null
model and we have therefore to reject the hypothesis of
facilitation in the overall relation between shrubs of all
species and grass tufts of all species.



120 USER MANUAL FOR PROGRAMITA

4.4. Random labeling under antecedent condition

Random labeling is in some respect a hermaphrodite null model with characteris-
tics of both, a bivariate null model and a univariate null model. This is because
the relation between pattern 1 and pattern 2 is assessed conditionally on the loca-
tion of all points. The process that distributes the labels (e.g., whether or not a
tree is dead or burned or infected) determines only the location of one type of
points within all points (e.g., the occurrence of the event dead, burned or in-
fected). The locations of the second type of points follow automatically from the
locations of type 1 points (i.e., all points which are not type 1).

Because random labeling shares characteristics of univariate null models we can
extend the idea of random labeling to a situation which combines features of an
antecedent condition with bivariate random labeling. Such a null model is appro-
priate for situations where the process that assigns labels may depend on a third
pattern. Biological examples of such situations are burned and non-burned (non-
serotinuos) shrubs in relation to a second (serotinuos) shrub species. In this case
the question is whether burned shrubs are closer to the (serotinuos) shrub species
than non-burned shrubs. This would correspond to a "kill my neighbour" strategy
of the serotinuos shrub species. Another example is to extend the analyses of the
shrub-grass steppe (examples RL_2.res and A_2.res) and investigate whether or
not the grass tufts S. speciosa (pattern 1) are closer to shrubs than the tufts of all
other grass species (pattern 2).

Because classical point pattern analysis with Ripley's K-function and the Wie-
gand-Moloney O-ring statistic allows only analysis of 2 patterns, but not three
patterns as necessary for random labeling under antecedent condition, we use a
dirty trick that takes advantage of the feature of Programita to calculate second-
order statistics in any irregularly shaped study region supported by the underly-
ing grid. We use the modus list with coordinates in a grid and code cells occu-
pied by shrubs as patter 1, cells occupied by S. speciosa as pattern 2 and cells
occupied by all other grass tufts are coded as empty cells. If we now apply the
option "irregularly shaped study region" and the null model "random labeling
special" Programita distributes the points of pattern 2 randomly over the loca-
tions of the study region not occupied by pattern 1. The bivariate O-ring statistic
therefore investigates whether or not S. speciosa tufts are more frequently in the
neighborhood of cells occupied by shrubs than tufts of all other grass tufts.
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Map used in the example
RL_ A l.res. Red: shrubs,
green: grass tufts of the
species S.  speciosa,
white: grass tufts of all
other species, and black:
bare ground.

4.4.1.Shrubs and grass tufts (RL_A_1.res)

1)

~ oUW

highlight the data file "RL Al.dat" in window Input data file.
This data set contains the location of shrubs (pattern 1),
grass tufts of S. speciosa (pattern 2), and grass tufts of
all other species (empty cells).

select "List" in How are your data organized

select "Analyze all data in rectangle" in Give modus of analysis
select "Data are given as list in grid" in Select modus of data
select "irregularly shaped study region".

click button "Calculate index".

Enable the check box "Calculate confidence interval" on
the upper left. A window with settings for null models ap-
pears. Select "Random labeling special".

Provide "99" for the number of replicate simulations of
the random labeling null model

click "Calculate index". Programita now performs the simu-
lations of the random labeling null model. The results

Bivariate (-ring statistic (WA
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£ o f,fr’
S i Hff
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show that grass tufts of the species S. speciosa are not
more frequently in the neighborhood of cells occupied by
shrubs than tufts of all other grass tufts. Therefore we
reject the hypothesis that S. speciosa differs in its re-
lation to shrubs from grass tufts of all other species.
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4.5. Bivariate cluster processes

4.5.1.Background

There are several possibilities to construct bivariate cluster processes. We show
here and in the next section only two simple cases which are straight forward
generalizations of the univariate Poisson cluster process.

The bivariate cluster process is the analogue to the univariate cluster process, but
two types of points are generated (instead of one type) using a common set of
parents.

Parent events form a CSR process. Parents may produce a random number of
offspring of two different types (however, not each parent needs to produce off-
spring of both types) and offspring of both types are spatially distributed around
their parent according to two bivariate probability density functions. The final
bivariate pattern consists of the offspring of the two types only. Thus, both types
of points are clustered around shared parents. This null model e.g., describes an
environmental heterogeneity that affects both patterns in the same way.

If the number of offspring follows for both types of points a Poisson distribution
and the location of the both offspring types, relative to the parent individual,
have each a bivariate, Gaussian distribution, the offspring of each type follow a
univariate Neyman-Scott process (e.g., Diggle 1983) and the bivariate pattern
follows a bivariate Neyman-Scott processes. The K-function and the pair-
correlation function g(r) for this bivariate Neyman-Scott process are given by:

4 1- exp(—r2 /40122)

K(r,o,,p,) =
P2
C4)
exp(-r°/4c)) (
g(raalzaplz) = 1+ p 2 =
4no”py,
with o), =(c)+03)/2

where p is the intensity of the parent process, and o1,” is the resulting "bivariate
variance" of the distance between type 1 and type 2 points. Note that the theo-
retical expectation of 0122 is the average of the two univariate Gaussian distribu-
tion 01> and o” that determine the locations of the type 1 and type 2 offspring
relative to the parent. The unknown parameter p;, must be fit by comparing the
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empirical K (r) with the theoretical K-functions K(r, o p) (see Diggle 1983).

Comparison of the resulting parameters o1,> and P12 of bivariate cluster process
with the parameters of the two univariate component processes (o1, pi, 637, and
) reveal which proportion of the parents are shared parents and whether there
are some inconsistencies which may indicate that this null model does not well
describe the data.

If all parents are shared we obtain p;; = p; = p,. If only a certain proportion of
the parents are shared (i.e., some of them are only cluster centres of type 1 or
type 2 points) we may expect that min(p), p2) < pi2 < p1 + po. In this case the
total number of shared parents is A(p; + 2 - pi12), the proportion of shared par-
ents among all parents is (p; + o2 - p12)/ 012, and the proportion of parents of pat-
tern i is pi/p12. A is the total number of cells in the study region.

However, if we find p;2 >> p; + p» we have an argument that the data are not
well described by a bivariate Neyman-Scott process. In this case the fitted pa-
rameter pj, indicates that there are more shared parents than parents of the two
individual component patterns. Similarly, this null model is only likely if o1, ~
(61> + 0°)/2. However, when evaluating the plausibility of the null model, we
need to consider the uncertainty in the fit and construct confidence intervals of
o1z and py».

4.5.2. Implementation of bivariate Neyman-Scott process

The procedures for fitting a bivariate Neyman-Scott process to a bivariate pattern
are analogous to the univariate case. The only difference is that it requires previ-
ous analysis of the univariate patterns.

The implementation of the cluster null model based on the bivariate Neyman-
Scott process equation C4 is analogously to the implementation of the univariate
process, however, we consider the possibility that not all parents are shared. At
the beginning of each simulation of the null model, Programita determines the
random locations for the parents (= trunk[4pi2], 4 = number of cells in study
region, and the function trunk[x] truncates x to the nearest integer), and the
number of parents of pattern 1 (= trunk[4,0)) and of pattern 2 ( = trunk[40:]). It
uses only the first trunk[4 ;] parents for simulation of type 1 points, and the last
trunk[A4,0;] parents for simulation of type 2 points. In this way Programita uses
three types of parents: parents only for type 1 points, parents for type 1 and type
2 points, and parents only for type 2 points.
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4.5.3. Adult trees and recruits (NS_4.res)

1)

This example analyzes the spatial pattern of recruits and
adult trees and continues the analysis of example A l.res.
The univariate analyses showed that the pattern of the re-
cruits 1is the superposition of clusters at a small and a
larger scale (example NS 2.res) whereas the adults are
clustered at only one scale (example NS 3.res). The larger
scale of recruit clustering coincides with the scale of
adult clustering which suggests that the clustering de-
scribes basically the environmental heterogeneity.
Highlight the data file "A 1.dat" in window Inputdata file. This
data set gives the location of adult trees and recruits at
a meter scale, but has a resolution of 1 centimeter.
select "List" in How are your data organized

select "List with coordinates, no grid" in Select modus of
data. A window opens asking you to provide a cell size. In-
sert "1.00".

click the button "change" in set maximal radius rmax and to set
the maximal scale r of the analysis to rp., = 100, and se-
lect a ring width of dr = 3.

click button "Calculate index", Programita shows you the
pattern and calculates the O-ring function of the data:
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To determine Monte Carlo confidence intervals for the
bivariate Neyman-Scott null model enable the check box
"Calculate confidence interval" on the upper left. A win-
dow with settings for null models appears, select "cluster

process". A window with a selection of cluster process
null models appears, enable "bivariate Neyman-Scott" and
press ok.

Programita calculates the g- and the L-function for r =1

to Ipax:
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At this point we are confronted with a problem that may
frequently appear if the data we want to fit do probably
not follow the bivariate Neyman Scott process perfectly.
Remember that the recruits show a double-clustered pattern

(see example NS 2): we fit two different solutions for the
fit.
e TIf we adjust equation C4 for scales r = 1 - 55 the

best fit yields Opest = 14.24 and pPrest = 0.000185 which
corresponds to some 46 parents (graphic above).

e TIf we adjust equation C4 for scales r = 15 - 100 the
best fit yields Opest = 19.77 and pPrest = 0.000154:
which corresponds to some 38 parents (graphic below) .

5.5' 14_
5 8 105
o 3.3 ] -
ShaT
1.1-
0 i
0 20 40 &l 20  10C 1] 20 40 &l g0 10cC
Spatial seale v Spatial seale v
We can also switch between the two solutions if we select
r = 6 - 100 and optimize only the g-function (first solu-
tion) :

optimize (™ |- and g

C'g:IE f* g - function

o1 2|1 L - function
or optimize only the L-function (second solution). How-
ever, both solutions look reasonable. To assess which of
the two solutions is more probable we first check the
plausibility (or biological interpretation) of the two so-
lutions and next simulate the two corresponding processes
to find confidence envelopes.
For the biological interpretation of the two solutions we
compare them to the results of the univariate analyses
(NS 2.res and NS 3.res). The two solutions of the bivari-
ate analysis were:

® Opest = 14.28 and presr = 0.000185 (46 parents)
® Opest = 19.77 and pPrest 0.000154 (38 parents)

and the results of the univariate analyses were:

® Ojpest = 14.08, 100p1pest = 0.0083 (20 parents)
®  Ouest = 14.40, 100p5pest = 0.0095 (23 parents)
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Thus, the first solution yields an excellent accordance
with the expected theoretical wvariance of = (ohwsf +
aheﬁz)/2, and the number of parents of the component proc-
esses (20 + 23 =43) is approximately the number of parents
of the bivariate case (46). The interpretation of this is
that the cluster centers of the two patterns are basically
disjunct.

The second solution yields a poorer accordance with the
expected theoretical wvariance Gf, but there are shared
cluster centers: 39% of all parents are only parents of
pattern 1, 13% of all parents are parents for patterns 1

and 2, and 47% of all parents are only parents for pattern
2.

10) For construction of confidence envelopes for the first so-
lution click "Calculate index". Programita now performs
the simulations of the bivariate Neyman-Scott null model
(NS_4 solutionl.res):

Bivariate O.ring statistic (W.M)
am024 W
E‘:{l-.ll #
=1 Ik 1
LT L
N EE R
Spatial stale r jeells]
This process describes the data well at spatial scales r >
10, but does not well describe the peak at scales r = 5-
7.

11) For construction of confidence envelopes for the second
solution click "Calculate index". Programita now performs
the simulations of the bivariate Neyman-Scott null model
(NS_4 solution2.res).

12) The simulation of 99 replicates of the Neyman-Scot null
model shows that the data are well within the confidence
envelopes of the null model (right figure), except for the
scales r =5 - 7:

Univariate 0. ring statistic (W. M) Bivariate O-ring stwtlsle (W-M)
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The confidence envelopes are much wider at smaller scales
than those of the first solution.

In summary, our results indicate that the locations of the
recruits may for larger scales (i.e., r > 10) not directly
be correlated with the locations of adult trees, but indi-
rectly via an environmental heterogeneity that constrains
both patterns in the same way (note that the univariate
estimates for oOpest were the same for recruits and adult
and also used for the bivariate Neyman Scott null model).
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However, to exclude the alternative hypothesis that the
locations of the recruits are directly linked to the loca-
tions of adult trees, we need to confront the data to the
null model that corresponds to this hypothesis (i.e., the
linked process using a bivariate Neyman-Scott cluster
process with antecedent condition, example A C 4.res)

Analogous simulations of the null model, but using the es-
timated value of Oﬁz (i.e., o = 0, - 0y,) 1instead of af
(NS 4 sigmal2.res) yields narrower confidence envelopes
for the bivariate analysis but does not change the results
at larger scales (i.e., r >15):

Undrariate O ring statistic (WM} Birariaie O-ring stutstic (W-M)
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The bivariate O-ring function shows a significant peak at
scales r = 5 - 7 (some 6m). In order to properly interpret
this peak, we show the univariate and bivariate g-function
with a resolution of 25cm and a ring width of 5 cells,
thus "zooming" into the clusters of adult trees:
Unibvariate O-ring stathrtic (W-M) Hivarinte O-ring statistic (WM
p— 000023
000 i:?
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TR 0000 |
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13)

The left figure (univariate g-function of adult trees)
shows that adult trees have a minimal distance of some 6
cells = 1.5m. There is a sharp peak at a scale of some 10
cells (= 4 m) which indicates aggregation of adults at 4m
and the rest of the g-function shows clear indications for
"virtual aggregation" which of course is the large scale
clustering already discovered in example NS 3.res.

This results indicate that some adult trees occur within
the larger clusters in randomly distributed clumps of some
2 or 3 trees with stems 4m away. If recruits and adults
share a cluster, then recruits appear more frequently some
om away from the adults (right figure above). This attrac-
tion could be an effect of avoidance of direct competition
to adult trees in combination with a limited seed disper-
sal radius from direct seed rain.

We saved the settings and results of the fit of the
bivariate Neyman-Scott null model to the data (NS 4.fit)
and use them now to estimate confidence intervals for the
estimates of the parameters Opest and prest (See section
"Constructing confidence intervals for o and p"):
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TN \
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Parameter o

The confidence intervals for an error < 0.012 are shown as
bold intervals at the axes. We find o € (16.7, 23.3) and
100*p S (O 014, 0.017). The theoretical value of sigma,
a; = (ohﬁﬁ,+am%t)/2 = 14.24 is indicated by a dashed ver-
tical line and the parameters used for simulations of the
null model are shown as a black dot. af is outside the
confidence interval for an error < 0.012, but inside the
confidence intervals for error < 0.02, which is still
small.

0002 4

4.5.4.Dead trees and recruits (NS_5.res)

1)

This example analyzes the spatial pattern of recruits and
dead trees and complements the analysis of example
NS 4.res. The univariate analyses showed that the pattern
of the recruits i1is the superposition of clusters at a
small and a larger scale (example NS 2.res) whereas the
dead trees are clustered at only one scale (example
NS 3b.res).

Highlight the data file "Dead recruits.dat" in window Input
data file. This data set gives the location of dead trees and
recruits at a meter scale, but has a resolution of 1 cen-
timeter.

select "List" in How are your data organized

select "List with coordinates, no grid" in Select modus of
data. A window opens asking you to provide a cell size. In-
sert "1.00".

click the button "change" in set maximal radius rmax and set the
maximal scale r of the analysis to r.x = 50.

click button "Calculate index", Programita shows you the
pattern and calculates the O-ring function of the data:
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To determine Monte Carlo confidence intervals for the

bivariate Neyman-Scott null model enable the check box
"Calculate confidence interval" on the upper left. A win-
dow with settings for null models appears, select "cluster
process". A window with a selection of cluster process

null models appears, enable "bivariate Neyman-Scott" and
press ok.
Programita calculates the g- and the L-function for r =1

to Inax and the window Fit of Neyman-Scott models to data appears. You
can specify the tuning constants ruin, ZImaxr and c¢ for the
fit in the window "Fit cluster process".

Select Ipax 1 and ro = 65. The default power transforma-
tions ¢ = 0.5 for the g-function and ¢ = 1 for the L-
function are reasonable starting values. To optimize the
g- and the L-function simultaneously enable "both, L- and
g-function".

Click the button "fit"
ters of the bivariate

and Programita searches the parame-
Neyman-Scott model that simultane-

ously fits the g- and L- function of your data best (red
line: fit, black line: data).
To optimize the parameter fit, press the button "Zoom".

Programita now determines the probable range of the pa-
rameters. Next, press "fit" and Programita searches the
best fit. We find Gpese = 10.8 and peese = 0.000198:
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12)

13)

14)

This corresponds to a cluster size of some 22m, and some
49 parents events. The estimated 49 parents coincide with
the estimated 49 parents found in the univariate analyses
of the dead trees (example NS 3b.res)and 1is larger than
the 24 parents of the recruits (NS 2.res). This indicates
that all cluster centers of the recruits are also cluster
centers for dead trees. Note that in the previous analysis
of adult trees and recruits some cluster centers were ex-
clusively for adults or recruits.

To save the settings and results of the fit click button
"Save results" and provide "NS 5".

Provide the values 0Of Oipestsr Oibestr Pipestr aNA Popest from the
analysis of the univariate patterns. Programita uses the
values of pPrestr Pivestr and pPopest to determine which parent
serves as cluster centre for pattern 1, pattern 2, or both
patterns at the same time. Note that Programita does not
use the fitted estimate of GQZ for simulation of the null
model, but your input af = (am%tﬂqnme)/Z which uses the
estimates from the univariate analysis. Therefore it is
important that you perform previous univariate analyses.
The values from the bivariate analyses were:

® Opest = 10.8 and 100ppese = 0.0198 (some 49 parents)
The values from the univariate analyses were:

Oipest = 6.916, 100p1pest = 0.0197 (49 parents)
®  Ouest = 14.40, 100pmpest = 0.0095 (23 parents)

Thus, half of the cluster centers are cluster centers of
the recruits, and all are centers of the dead trees.

Next click "ok", select a ring width of dr = 3, and click
"Calculate index". Programita now performs the simulations
of the bivariate Neyman-Scott null model. The simulation
of 19 replicates of the Neyman-Scot null model shows that
the data are well within the confidence envelopes of the
null model (right figure):
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These results indicate that the locations of the recruits
may indirectly be correlated with the locations of dead
trees. One hypothesis to explain this result is that the
correlation is induced, similarly to the case of adult
trees and recruits (example NS 4) via an environmental
heterogeneity that constrains both patterns in the same
way. However, this result leaves still room for the alter-
native hypothesis that the locations of the recruits are
directly 1linked with the locations of the dead trees
(i.e., a competition release effect combined with an envi-
ronmental heterogeneity). To reject or accept the alterna-
tive hypothesis we need to confront the data to the null
model that corresponds to this hypothesis (i.e., the
linked process using a bivariate Neyman-Scott cluster
process with antecedent condition, example A C 3.res)
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4.6. Bivariate cluster processes under antecedent condition

4.6.1.Background

The bivariate cluster process under antecedent condition assumes that points of
pattern 1 are parents of type 2 points and that pattern 1 is a random pattern. Thus,
the process that creates pattern 2 is linked to pattern 1, e.g., a clustered distribu-
tion of seedlings around randomly distributed adult trees. The locations pattern 1
have to be preserved (i.e., an antecedent condition), and the type 2 points are
randomized following a Neyman-Scott process null model where their parents
are selected randomly among the type 1 points. Thus, only a certain proportion
of type 1 points need to serve as centre for a cluster of type 2 points. The as-
sumption for calculating the theoretical expectation for the g and L-function of
this null model is that the points of pattern 1 are randomly distributed. The inten-
sity of type 1 points which are cluster centers of pattern 2 is p,. The K-function
and the pair-correlation function g(r) for this bivariate Neyman-Scott process are
given by:

ot 1—exp(-r*/20},)
P2

K(r,0,,p1,)

, (C5)
B exp(—r>/207,)

glr,on,p,) = 1+ 2
P2 270y,

with parameters 0'122 and pi,. The parameter 0122 is the variance of the Gaussian
distribution that determines the locations of type 2 points relative to their (type
1) parents, and the parameter pi, is the intensity of pattern 1 (i.e., p12 = 4;). Note
that equation C5 does not allow to determine the intensity p, of parents of type 2
points. This must be done by previous univariate analysis of pattern 2 (see

equation C6).
If the cluster size is large (i.e., o1, is large), equation C5 approximates K(r) = 7
#* and g(r) = 1 which corresponds to independence of the offspring from their

parents.

The univariate g- and K-functions of pattern 2 are given through equation C1:
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N 1—exp(—r*/40;)
P

Ky (r,0,,p,)
(C6)

exp(-r>/407)
r,o,, = 1+
8x»(r,0,,p,) 4”0_22102

The parameter o, determines the locations of type 2 points relative to their (type
1) parents and should coincide with the parameter o, of equation C5. The pa-
rameter p; is the intensity of type 1 points which are parents of type 2 points and
should be smaller or equal than the intensity 4; of type 1 points. The proportion
of points of pattern 1 which serve as parents for points of pattern 2 can be calcu-
lated by comparing the estimates of p, from the univariate analysis of pattern 2
with the intensity 4; of pattern 1.

4.6.2. Implementation of the antecedent condition cluster process

The procedures for fitting the bivariate Neyman-Scott process under antecedent
condition to a bivariate pattern are analogous to the univariate case. The only
difference is that it requires previous analysis of the univariate patterns for
checking the assumption that pattern 1 is a random pattern and for determining
the proportion of points of pattern 1 which serve as parents.

4.6.3. Antecedent cluster process (C_A_1.res)

The data for this example was created with an antecedent cluster process. A total
of 25 type 1 points were randomly distributed over a 200 x 200 cell grid and all
of them served as cluster centre for 100 points of pattern 2. The (bivariate) pa-
rameters of pattern 2 were:

® O1p= 8, and

e P12 =0.000625.

In a first step we analyzed the two univariate component patterns and in a second
step the bivariate pattern.

1) Select the data file "C Al.dat" in window Input data file. This
artificial example was created with an antecedent cluster
process with parameters o1, = 8 and p;; = 0.000625.

2) select "List" in How are your data organized and "Data are given
as a list in grid" in Select modus of data.

3) «click the button "change" in set maximal radius rmax and set the
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maximal scale r of the analysis to rm.x = 50.
click button "Calculate index", Programita shows you the
pattern and calculates the O-ring function of the data:
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The univariate analysis of pattern 1 (C A luniPatl.res)

shows that this pattern is indeed an random pattern:

Undvariste L function (Ripley)
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For the univariate analysis of pattern 2 select the data
file "C Al 21.dat" in window Input data file. This is the data
from "C Al.dat" but pattern 1 and 2 are exchanged. Fitting
a univariate Neyman-Scott cluster yields

e o0, = 7.54 and p, = 0.00077 (31 parents)
which are in good agreement with the parameters under
which the pattern was created:

e o0, =8 and p;; = 0.000625 (25 parents).
For the Dbivariate analysis highlight the data file

"C _Al.dat" in window Inputdata file for the bivariate analysis.
select "List" in How are your data organized and "Data are given
as a list in grid"™ in Select modus of data.

click the button "change" in set maximal radius rmax and set the
maximal scale r of the analysis to rm., = 50.

click button "Calculate index", Programita shows you the
pattern and calculates the O-ring function of the data.

To determine Monte Carlo confidence intervals for a
bivariate Neyman-Scott null model enable the check box
"Calculate confidence interval" on the upper left. A win-
dow with settings for null models appears, select "cluster
process". A window with a selection of cluster process
null models appears, enable "Bivariate 1linked double-
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cluster".
The window Fit of Neyman-Scott models to data appears and asks you to
provide the results of the univariate analysis of pattern
1 and 2. The results of the univariate analysis are needed
for performing the fit and for simulation the null model.
Since your pattern 1is a random pattern, insert a high
value for o3 and a value for p; that is below the inten-
sity of pattern 1, and provide the results from univariate
analysis of pattern 2:

e o0 = 1111 and 100p; 0.1 (40 parents)

e o0, = 7.54 and 100p, = 0.077 (31 parents)
Click “ok” in the window for inserting the results of the
univariate analyses and again “ok” in the window for null
models.
Programita calculates the g- and the L-function for r =1
to Inax and the window Fit of Neyman-Scott models to data appears. You
can specify the tuning constants ruin, Tmax, and c¢ for the
fit in the window "Fit cluster process":

Select rmwy = 1 and rg = 50. We are only interested in the
structure of the pattern at smaller scales. The default
power transformations ¢ = 0.5 for the g-function and c =1

for the L-function are reasonable starting values. To op-
timize the g- and the L-function simultaneously enable
"both, L- and g-function".

Click the button "fit" and Programita searches the parame-
ters of the bivariate Neyman-Scott model that simultane-
ously fits the g- and L- function of your data best (red
line: fit, black line: data). For the initial parameter
intervals Programita finds the best fit for

®  Opest = 7.403 and ppest = 0.0007 (some 28 parents)

Since pattern 1 comprises only 25 points Programita gives
you a warning. Click "ok and Programita continues calcu-
lating the best estimate of oOp.st for 25 parents under con-
stant oﬁwmgwm (see discussion of equation C2) which 1is

Obest = 71.835. Thus, Programita finds a best estimate for
01, = 7.8 which is in good agreement with the parameter
value under which the pattern was created (o, = 8).

To optimize the parameter fit, press the button "Zoom".
Programita now determines the probable range of the pa-
rameters. Programita finds

®  Opest = 7.842 and presr = 0.0006764 (some 27 parents).
Correction of o for 25 parents yields a best estimate of
01, = 8.158 which is in excellent agreement with the pa-
rameter value under which the pattern was created (o0, =
8).
Insert the results of the univariate analysis of pattern 2
and confirm in the window for inserting the results of the
univariate analyses by clicking “ok” and again “ok” in the
window for null models. The window Fit of Neyman-Scott models to
data disappears.
The simulation of 99 replicates of the Neyman-Scot null
model shows that the data are well within the confidence
envelopes of the null model:
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20) We saved the settings and results of the fit of the
bivariate Neyman-Scott null model to the data (C N 1.fit)
and use them now to estimate confidence intervals for the
estimates of the parameters Opest and pPrest (see section
"Constructing confidence intervals for o and p"):

——0.018 ]
0.060 20

0.085

0.080 4

Parameter 100* o
=3 =
3 3

3

0.055

5 & ¥ 8 9 10 1
Parameter o
The confidence intervals for an error < 0.016 are shown as

bold intervals at the axes. We find o € (7.14, 8.55) and

100*p € (0.064, 0.072). The best estimate for 25 parents
(black dots) is within the confidence interval.

4.6.4. Antecedent cluster process (C_A_2.res)

This artificial example is a variant of the previous example (example
C_A_l.res) where pattern 1 is the same as in the previous example, but pattern
2 was simulated only with 10 instead of 25 parents which were randomly se-
lected out of the 25 type 1 points. The (bivariate) parameters of pattern 2 were:

® O12~ 8, and

e p12=0.00025.

In a first step we analyzed the two univariate component patterns and in a sec-
ond step the bivariate pattern.

1) Select the data file "C _A2.dat" in window Input data file. This
artificial example was created with an antecedent cluster
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process with parameters o1, = 8 and p;, = 0.00025.

select "List" in How are your data organized and "Data are given
as a list in grid" in Select modus of data.

click the button "change" in set maximal radius rmax and set the
maximal scale r of the analysis to ru.x = 50.

click button "Calculate index", Programita shows you the
pattern and calculates the O-ring function of the data.
The wvisualization of the data shows that type 2 points
are clearly clustered around type 1 points, but not
around all type 1 points:

- *

For the univariate analysis of pattern 2 select the data
file "C A2 21.dat" in window Input data file. This is the data
from "C A2.dat" but pattern 1 and 2 are exchanged. The
analysis fitting a univariate Neyman-Scott cluster yields
e o0, = 7.3 and p, = 0.00027 (11 parents)
which are in good agreement with the know parameters
e o0, = 8 and p;, = 0.00025 (10 parents).
For the Dbivariate analysis highlight the data file
"C A2.dat" in window Inputdatafile for the bivariate analysis.
select "List"™ in How are your data organized and "Data are given
as a list in grid" in Select modus of data.
click the button "change" in set maximal radius rmax and set the
maximal scale r of the analysis to ru.x. = 50.
click button "Calculate index", Programita shows you the
pattern and calculates the O-ring function of the data.
To determine Monte Carlo confidence intervals for a
bivariate Neyman-Scott null model enable the check box
"Calculate confidence interval" on the upper left. A win-
dow with settings for null models appears, select "clus-
ter process". A window with a selection of cluster proc-
ess null models appears, enable "Bivariate linked double-
cluster".
The window Fit of Neyman-Scott models to data appears and asks you
to provide the results of the univariate analysis of pat-
tern 1 and 2. The results of the univariate analysis are
needed for performing the fit and for simulation the null
model. Since your pattern is a random pattern, insert a
high value for o3 and a value for p; that is below the in-
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tensity of pattern 1, and provide the results from uni-
variate analysis of pattern 2:

® o, = 1111 and 100p; = 0.1 (40 parents)

® o, = 7.3 and 100p, = 0.027 (11 parents)
Click “ok” in the window for inserting the results of the
univariate analyses and again “ok” in the window for null
models.
Programita calculates the g- and the L-function for r = 1
to Inax and the window Fit of Neyman-Scott models to data appears.
You can specify the tuning constants Tui,, Tnax, and c for
the fit in the window "Fit cluster process":
Select Iy = 1 and ry = 50. The default power transforma-
tions ¢ = 0.5 for the g-function and ¢ = 1 for the L-
function are reasonable starting values. To optimize the
g- and the L-function simultaneously enable "both, L- and
g-function".
Click the button "fit" and Programita searches the pa-
rameters of the bivariate Neyman-Scott model that simul-
taneously fits the g- and L- function of your data best
(red line: fit, black line: data). For the initial pa-
rameter intervals Programita finds the best fit for

®  Ohest = 7.779 and prest = 0.00065 (some 26 parents).
Since pattern 1 comprises only 25 points Programita gives
you a warning. Click "ok and Programita continues calcu-
lating the best estimate of opest for 25 parents under
constant oﬁmﬁgmﬁ (see discussion of equation C2) which
1is Opest = 7.933 which is in excellent agreement with the
parameter value under which the pattern was created (o, =
8) .
To optimize the parameter fit, press the buttons "Zoom"
and “Fit”. Programita now determines the probable range
of the parameters. Programita finds

®  Ohest = 7.436 and ppest = 0.00066 (some 27 parents).
Correction of o for 25 parents yields a best estimate of
o, = 7.656 which is in good agreement with the parameter
value under which the pattern was created (o, = 8).
The simulation of 99 replicates of the Neyman-Scot null
model shows that the data are well within the confidence
envelopes of the null model:
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We saved the settings and results of the fit of the
bivariate Neyman-Scott null model to the data (C N 2.fit)
and use them now to estimate confidence intervals for the
estimates of the parameters oOpest and pPrest (sSee section
"Constructing confidence intervals for o and p"):
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The confidence intervals for an error < 0.036 are shown
as bold intervals at the axes. We find o € (6.44, 8.52)
and 100*p € (0.060, 0.073). The best estimate for 25 par-
ents (black dots) is within the confidence interval.
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4.7. Bivariate double-cluster process for antecedent condition

4.7.1.Background

The bivariate cluster process under antecedent condition assumes that points of
pattern 1 are parents of pattern 2 and that pattern 1 is a random pattern. In real
situations, however, this assumption may be violated and pattern 1 may itself
show a clustered univariate structure. In this case we cannot determine the pa-
rameter p; that determines the number of parents of pattern 2 (and which is used
for simulation of the null model) with equation C6 because the univariate struc-
ture of pattern 2 does not follow a simple Neyman-Scott cluster process, but a
double-clustered Neyman-Scott process. We thus generalize equation C5 and
equation C6 for a double-clustered process where pattern 1 follows a Neyman-
Scott cluster process (equation C1), and some (or all) type 1 points are cluster
centers for type 2 points:

1 exp(-r®/20},) s exp(-r* /202,

g,(r,o,p,0,,0,) = 1+
12 1 1 12 12 plz 272_0_122 pl 272'0_2 (C7)

sum

with o =207 +0),

sum

2 2 2 2
7zr2+1 exp(—r /20'12)+1 exp(-r~ /2o,

Sum

Prz el (C8)

K, (r,00,p0,0,,0,) =

with o}, =20} +0),

with the four parameters:

. 0'21, the variance of the Gaussian distribution that determines the loca-
tions of type 1 points relative to their parents. The parameter o* needs
to be determined previously through an univariate analysis of pattern 1

e i, the intensity of parents of pattern 1 and needs to be determined pre-
viously through an univariate analysis of pattern 1

e ppy, afitted parameter that theoretically yields p1» = 4,

e o 12, a fitted parameter that gives the variance of the Gaussian distribu-
tion that determines the locations of type 2 points relative to their (type
1) parents. The value of this parameter should coincide with the parame-
ter 0%, determined through univariate analysis of pattern 2

Note that equation C7 and equation C8 are the analogues to equation DC2 and
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equation DC3, respectively, which describe a univariate double-cluster process.

The first term of equation C7 (= 1) describes the situation where the two pat-
terns are independent (i.e., type 2 points are not clustered around type 1 par-
ents), the second term describes the additional effect of clustering of type 2
points around type 1 parents with parameters ¢°1, and pi, and the third term
describes the compound effect of clustering of the parents (= pattern 1) and the
offspring (= pattern 2) around the parents (= pattern 1). The variance oy is the
combined variance that describes the interaction of clumping at the two scales

0212 and 021.

If pattern 1 is a random pattern, the third term disappears and equation C7 col-
lapses back to equation C5. If type 2 points are independent from type 1 points
(i.e., o 12 = ) it follows that ou sum — o0 and equation C7 and equation C8 col-
lapse, as expected, back to a CSR process with g(r) = 1.

A realization of the process described by equation C7 and equation C8 results in
double clustering of pattern 2.
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Figure C6. Effect of variation in the parameters o, P o1, and p12 on the shape of the bivari-
ate g-function under antecedent condition and double clustering (equation C7). (A) Influence of
variance o> of the locations of type 1 points relative to their parents. Curves from top to bot-
tom: o1 =1, 2, 4, 6, 10, 16, 38. (B) Influence of the intensity p, of the parents of type 1 points.
Curves from top to bottom: p; = 12, 19, 25, 38, 62, 125. The dashed line is the contribution of
the first two terms only. (C) Influence of variance o, of the locations of type 2 points relative
to type 1 points. Curves from top to bottom: oy = 6, 9, 12, 15, 18, 24. (D) Influence of the inten-
sity pio of the parents of type 1 points. Curves from top to bottom: pj, =25, 38, 50, 75, 100, 125.
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Performance of an analysis using a double-clustered Neyman-Scott process un-
der antecedent condition requires three steps:

1. univariate analysis of patterns 1

2. analysis of the univariate pattern of type 2 points within the framework
of bivariate double-cluster processes

3. the final bivariate analysis

The parameters o7 and p; of the univariate analysis of pattern 1 are needed to fit
equations C7 and equation C8 to the data (first step). The parameter p, of the
univariate analysis of pattern 2 (the intensity of type 1 points which are parents
of type 2 points) is not needed for the fit of the bivariate process equation C7,
but for simulation of the process. If pattern 1 is clustered (i.e., equation C7), the
parameter p, needs to be estimated by fitting the univariate g- and K-function to
the expected g- and K-function of a univariate double-clustered Neyman-Scott
process equation DC2 and equation DC3 (second step):

1 exp(-r*/403) s exp(—r’ /402, )
yox 4ro’ o) 4ro’ (C9)

sum

gn(r,0,,0,0,,p,) = 1+

: 2 2 2
with o, =0, +0,

sum

2, 1= exp(—r’/40;) L= exp(—r*/403,,)
S o, (C10)

K,(r,o,p,p,,0,) =

with o =0l +0;
with the four parameters:

e o, the parameter that gives the variance of the locations of type 2
points relative to their parents (= type 1 points).

ey, the intensity of the parents of the type 2 points.

e o, the parameter that gives the variance of the locations of type 1
points relative to their parents.

e p; is the intensity of the parents of type 1 points.

Comparison of the resulting parameters o1,> and P12 of bivariate double-cluster
process under antecedent condition with the parameters of the two univariate
component processes (o1, o1, 03, and py) reveal how much type 1 points
served actually as parent for type 2 points (the parameter p,, this information is
needed for simulation of the null model) and whether there are some inconsis-
tencies which may indicate that this null model does not well describe the data.
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If all type 1 points are parents we expect pi» = 41 = p» and p; < p,. Thus, the
fitted intensity of type 1 points should coincide with the known intensity of type
1 points and there should be less parents of pattern 1 than parents of pattern 2. If
only a certain proportion of type 1 points are parents of type 2 points we expect
P12 = A1, ;i< Ajand p; < Ay, thus the number of parents of type 1 points cannot
exceed the number of type 1 points and there should be less parents of pattern 1
than type 1 points. Additionally, we expect oy 20'22, thus the parameter o*1s
(that determines locations of type 1 points relative to their parents) which is
fitted with the bivariate model (third step) should be the same as the correspond-
ing parameter o, fitted with the univariate model (second step).

If p» < A1 Programita assigns in every simulation of the null model a different,
randomly chosen, set of parents among all type 1 points for simulation of the
locations of type 2 points.

4.7.2.Bivariate double-cluster process (C_A_3.res)

This artificial example uses the pattern of the dead trees (example NS_3b.res) as
parents and creates offspring (= pattern 2) with parameters:

e o»=10and 1000, =0.0542 (all 136 type 1 points are parents)
We proceed in the three steps: (1) univariate analysis of patterns 1, (2) analysis
of the univariate pattern of type 2 points within the framework of bivariate dou-
ble-cluster processes, and (3) the final bivariate analysis.

First step: univariate analysis of pattern 1 using a simple
cluster model:
see example NS 3b.res. We found o3 = 6.92 and 100p; = 0.02. This

corresponds to a cluster size of some 14m, and some 50 parent

events.

Second step: univariate analysis of pattern 1 using a double-
cluster model (C_A 3a.res):

1) Select the data file "C_A3.dat" in window Input data file. This
artificial example was created with an antecedent double-
cluster process.

2) select "List"™ in How are your data organized and "Data are given
as a list in grid" in Select modus of data.

3) click the button "change" in setmaximal radius rmax and set the

maximal scale r of the analysis to ry., = 50. Select a
ring width of dr = 3.
4) click button "Calculate index", Programita shows you the

pattern and calculates the O-ring function of the data.
The visualization of the data shows that type 2 points
are clearly clustered around type 1 points:
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For the univariate analysis of pattern 2 enable the check
box "Calculate confidence interval" on the upper left. A
window with settings for null models appears, select
"cluster process". A window with a selection of cluster
process null models appears; enable "Univariate double-
cluster".

The window “Univariate double-cluster Neyman-Scott” ap-
pears and asks you to provide the results of the univari-
ate analysis of pattern 1. The results of the univariate
analysis are needed for performing the fit and for simu-
lation the null model. Provide the results from univari-
ate analysis of pattern 1:

® O 6.92 and 100p, = 0.02

(50 parents)

Click “ok” in the window “Univariate double-cluster Ney-
man-Scott” and again “ok” in the window “Null models”.
Programita calculates the g- and the L-function for r 1
to Imaxy and the window Fit of Neyman-Scott models to data appears.
Select r.x = 1 and ro = 80 an click the button "fit".
Programita searches the parameters of equations 9 and 10
that simultaneously fits the g- and L- function of your
data best (red line: fit, black line: data). For the ini-
tial parameter intervals Programita finds the best fit
for
[ )

Ospest = 10.053 and 100p5pest = 0.0544 and

2,02 = 0.055

(136 parents)

Note that Programita defines the default wvalue of pux in
a way that it yields the number of type 2 points (= 136).
To increase the range of the parameter p set pOuax 0.1

and click “fit”. Programita now performs a new fit and
finds
®  Ouest = 10.053 and 100pmest = 0.06182 (164 parents)
and o%,p, = 0.06248

Because the estimate for p was larger than possible, Pro-
gramita calculates the best estimate of Oypest for 136 par-
ents under constant sz%tp%em (see discussion of equation
C2) which 1is Gapest = 10.717. This parameter estimates coin-
cide well with the parameters under which the process was
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created.

To optimize the parameter fit, press the buttons "Zoom"
and “Fit”. Programita now determines the probable range
of the parameters in the parameter space and performs a
new fit. Programita finds

® Oupest = 10.5 and 100pmmest = 0.05772 (144 parents) and

op = 0.06372

Because the estimated number of parents is higher than
the number of type 1 points, Programita gives you a warn-
ing. Click "ok and Programita continues calculating the
best estimate of oOuese for 136 parents under constant
G%b%tpﬂmm (see discussion of equation C2) which is Oupest =
10.822.
To proceed with simulation of the null model, click the
button ok in the window Fit of Neyman-Scott models to data and then
“Calculate index”.
The simulation of 19 replicates of the Neyman-Scot null
model shows that the data are well within the confidence
envelopes of the null model:
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Third step: bivariate analysis of using a double-cluster model

(C_A 3b.res).

1) Select the data file "C _A3.dat" in window Input data file. This
artificial example was created with an antecedent double-
cluster process.

2) select "List"™ in How are your data organized and "Data are given
as a list in grid" in Select modus of data.

3) «click the button "change" in set maximal radius rmax and set the
maximal scale r of the analysis to ry.,, = 50. Select a
ring width of dr = 3.

4) click button "Calculate index", Programita shows you the

pattern and calculates the O-ring function of the data.
The wvisualization of the data shows that type 2 points
are clearly clustered around type 1 points:
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For the bivariate analysis of pattern 2 enable the check
box "Calculate confidence interval" on the upper left. A
window with settings for null models appears, select
"cluster process". A window with a selection of cluster
process null models appears; enable "Bivariate double-
cluster".

The window “Linked double-cluster Neyman-Scott” appears
and asks you to provide the results of the univariate
analysis of patterns 1 and 2. Provide the results from
univariate analyses:

® o = 6.92 and 100p; = 0.02 (50 parents)
® o, = 10.822 and 100p, = 0.0544 (136 parents)

Click “ok” in the window “Univariate double-cluster Ney-
man-Scott” and again “ok” in the window “Null models”.
Programita calculates the g- and the L-function for r =1
to Imaxy and the window Fit of Neyman-Scott models to data appears.
You can specify the tuning constants rpin, Tmax, and c for
the fit in the window "Fit cluster process":

Select Ipax 1 and r, = 50. and click the button "fit"
and Programita searches the parameters of the bivariate
Neyman-Scott model that simultaneously fits the g- and L-

function of your data best (red line: fit, black line:
data). For the initial parameter intervals Programita
finds the best fit for

®  Oiopest = 10.127 and 100p1pest = 0.0546 (125 parents)

and

0212p12 = 0.051506
This parameter estimates coincide well with

under which the process was created.
To optimize the parameter fit,
and “Fit”.
of the parameters in the parameter space

press the
Programita now determines the

new fit.
° O12best

Programita finds

= 10.329 and 100pmpest =
= 0.05292

0.0496

the parameters
buttons "Zoom"
probable range
and performs a

(123 parents)

and 022p2
which coincides very well with the parameters under which
the process was created.
To proceed with simulation of the null model, click the
button ok in the window Fit of Neyman-Scott models to data and then
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“Calculate index”.

12) The simulation of 19 replicates of the Neyman-Scot null
model shows that the data are well within the confidence
envelopes of the null model:
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13) To show the need to use a double-clustered process for
fitting the parameter p, of the univariate analysis of
pattern 2 we repeat the analysis, but under the assump-
tion of a random structure of pattern 1 (i.e., Oiopest
=1111) . Now Programita finds best fits of

®  Oiopest = 12.6 and 100p1pest = 0.015 (37 parents) and
12P12 = 0.0233
which do not coincide at all with the original parameters
under which the process was created (o, = 10 and 100p, =
0.0542 [all 136 type 1 points are parents].

4.7.3. Analysis dead trees and recruits (C_A_4.res)

This example uses the univariate double-cluster process equation C9 and
equation C10 to analyze the bivariate pattern of dead trees and recruits. As in
the previous example, we proceed in three steps: (1) univariate analysis of pat-
terns 1, (2) analysis of the univariate pattern of type 2 points within the frame-
work of bivariate double-cluster processes, and (3) the final bivariate analysis.

First step: univariate analysis of pattern 1 using a simple
cluster model:

see example NS 3b.res. We found Opest = 14.1 and prese = 0.000083.

This corresponds to a cluster size of some 29m, and some 21 par-

ent events.

Second step: univariate analysis of pattern 1 using a double-
cluster model (C_A 4a.res):

1) Highlight the data file "Dead recruits.dat" in window In-
put data file. This data set gives the location of dead trees
and recruits at a meter scale, but has a resolution of 1
centimeter.

2) select "List" in How are your data organized
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select "List with coordinates, no grid" in Select modus of
data. A window opens asking you to provide a cell size.
Insert "1.00".

click the button "change" in set maximal radius rmax and set the
maximal scale r of the analysis to rm., = 50.

click button "Calculate index", Programita shows you the
pattern and calculates the O-ring function of the data.
For univariate analysis of pattern 2 assuming a double-
clustered process enable the check box "Calculate confi-
dence interval" on the upper left. A window with settings
for null models appears, select "cluster process". A win-
dow with a selection of cluster process null models ap-
pears, enable "Univariate double cluster".

The windows Fit of Neyman-Scott models to data and “Univariate dou-
ble-cluster Neyman-Scott” appears. Select the option
“bivariate” in this window and provide the results of the
univariate analysis of pattern 1:

e o0, = 6.916 and 100p, = 0.0189 (some 49 parents).
Click “ok” in the window “Univariate double-cluster Ney-
man-Scott” and again “ok” in the window “Null models”.
Programita calculates the g- and the L-function for r = 1
to Imax and the window Fit of Neyman-Scott models to data appears.
Select rp.x = 1 and ro = 100 and click the button “fit”.
Programita now searches the parameters of the bivariate
Neyman-Scott model that simultaneously fits the g- and L-
function of your data best (red line: fit, Dblack line:
data) . As expected, the best fit is not very good:
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Programita finds for the initial parameter intervals the
best fit
®  Oupest = 7.248 and 100pypest = 0.01197 (some 30 par-
ents)
Because we adjust here parameters of the smaller-scale
clustering we repeat the fit for a smaller maximum scale
ro = 35. For these scales, Programita finds for the ini-
tial parameter intervals the best fit
® Oupest = 5.177 and 100pypest = 0.01741 (some 43 par-
ents)
To optimize the parameter fit, press the buttons "Zoom"
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and “Fit”. Programita finds as best estimates
® Oiest = 5.246 and 100pypest = 0.01702 (some 43 par-
ents) .

For simulation of the null model click “ok” at the window
Fit of Neyman-Scott models to data and click “Calculate index”.
Programita simulates the confidence intervals of the uni-
variate analysis of pattern 2 using the best parameter
estimates for o, and p, and 43 type 1 points as parents.
The simulation of 19 replicates of the Neyman-Scot null
model shows that the data are well within the confidence
envelopes of the null model (although the confidence en-
velopes are not symmetric around the data):
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Third step: bivariate analysis of using a double-cluster model
(C_A 4b.res).

Highlight the data file "Dead recruits.dat" in window Input
data file. This data set gives the location of dead trees and
recruits at a meter scale, but has a resolution of 1 cen-
timeter.

select "List" in How are your data organized

select "List with coordinates, no grid" in Select modus of data.
A window opens asking you to provide a cell size. Insert
"1.00".

click the button "change" in set maximal radius rmax and set the
maximal scale r of the analysis to ru.x = 50.

click button "Calculate index", Programita shows you the
pattern and calculates the O-ring function of the data:
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For bivariate analysis assuming a double-clustered process
enable the check box "Calculate confidence interval" on
the upper left. A window with settings for null models ap-
pears, select "cluster process". A window with a selection
of cluster process null models appears, enable "Bivariate
linked double cluster".
The windows Fit of Neyman-Scott models to data and “Univariate dou-
ble-cluster Neyman-Scott” appear and ask you to provide
the results of the univariate analysis of pattern 1 and
pattern 2. This data are important for performing the fit
and simulating the null model. Insert

e o0, = 6.916 and 100p; = 0.0197 (some 49 parents).

e o0, = 5.246 and 100p, = 0.01702 (some 43 parents)
Click “ok” in the window “Univariate double-cluster Ney-
man-Scott” and again “ok” in the window “Null models”.
Programita calculates the g- and the L-function for r = 1
to rIgax and the window Fit of Neyman-Scott models to data appears.
Select rp.x = 1 and ro = 35 and click the button “fit”.
Programita now searches the parameters of the bivariate
Neyman-Scott model that simultaneously fits the g- and L-
function of your data best (red line: fit, Dblack line:
data) .
Programita finds for the initial parameter intervals the
best fit

° Oopest — 17.209 and 100p2best = 0.06
Because the estimated number of parents (=150) is higher
than the number of type 1 points (136), Programita gives
you a warning. Click "ok and Programita continues calcu-
lating the best estimate of Oispest for 136 parents under
constant czub%tpub%t (see discussion of equation C2) which
is O12pest — 18.078.
To optimize the parameter fit,
and “Fit”.

®  Oizpest =

ents) .

Because the estimated number of parents (=150) is slightly
higher than the total number of type 1 points (remember
that the theoretical expectation is i, = A1), Programita
gives you a warning. Click "ok and Programita continues
calculating the best estimate of 0Oipest for 136 parents un-—
der constant Gﬂgm%pub%t (see discussion of equation C2)
which is O12pest — 18.089.
Note that the estimate of Oispest (=

(some 150 parents).

press the buttons "Zoom"
Programita finds as best estimates

17.192 and 100pi5pest = 0.06023 (some 150 par-

18.089) is much higher
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than the estimate o0f Gisest (= 5.246) from the univariate
analysis of pattern 2. This result indicates that there
may be something wrong with assumption that the locations
of the dead trees function as parents for the recruits.
For simulation of the null model select a ring width of dr
= 3 and a maximal scale rmax= 100 and click “ok” at the
window Fit of Neyman-Scott models to data and click “Calculate in-
dex” . Programita simulates the confidence intervals of the
bivariate analysis using the best parameter estimates for
o1, and p;, and 43 type 1 points as parents. The simulation
of 19 replicates of the Neyman-Scot null model shows that
the data are well within the confidence envelopes of the
null model:
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We obtain the same result when using the L-function Thus,
the simulation of the double-clustered bivariate cluster
null model does not reject the hypothesis that the loca-
tions of the recruits are clustered around the locations
of the dead trees.

Univariate analysis of the recruits using a double-cluster
model (example DC 3.res) yielded the unbiased parameters
of the large scale clumping:

e o0 = 14.4 and 100p; = 0.0095 (some 24 parents).
and the estimated parameters for the small-scale cluster-
ing are:
e o0, = 3.83 and 100p, = 0.02165 (some 54 parents)

The results of the analysis under the antecedent condition
that the dead trees are the parents are:

e first step: o, = 6.916 and 100p;, = 0.0197 (some 49

parents) .

e second step: o, = 5.246 and 100p, = 0.0170 (some 43
parents)

e third step: o3, = 18.089 and 100p, = 0.0544 (some 136
parents) .

Thus, the clustering of the dead trees does not accord
with the large-scale clustering of the recruits determined
through univariate analysis using a double-cluster model
(example DC 3.res) and consequently the estimate for o
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and o1, are biased. This example shows that testing the
null hypothesis of antecedent double-clustering requires
extensive analyses of the univariate patterns and checking
for internal consistency.

4.7.4. Adult trees and recruits (C_A_ba.res)

This example continues the analysis of example NS _4.res where we applied a
bivariate Neyman-Scott cluster model to the data. We found that data may be
described by a model that assumes random cluster centers (which may corre-
spond to patches with favorable conditions for the tree species) and clustered
distribution of recruits and adult trees around the cluster centers. Here we as-
sume the alternative null model that the locations of the recruits are directly
linked to the adult trees which correspond to an effect of a limited seed dispersal
radius.

We proceed in three steps: (1) univariate analysis of patterns 1, (2) analysis of
the univariate pattern of type 2 points within the framework of bivariate double-
cluster processes, and (3) the final bivariate analysis.

First step: univariate analysis of pattern 1 using a simple clus-
ter model:

See example NS 3.res, we found
® o = 14.1 and 100p; = 0.0083 (some 21 parent events).

Second step: univariate analysis of pattern 1 using a double-
cluster model (C_A 5a.res):

1) Highlight the data file "A 1.dat" in window Inputdata file. This
data set gives the location of dead trees and recruits at
a meter scale, but has a resolution of 1 centimeter.

2) select "List" in How are your data organized

3) select "List with coordinates, no grid" in Select modus of
data. A window opens asking you to provide a cell size. In-

sert "1.00".

4) click the button "change" in set maximal radius rmax and set the
maximal scale r of the analysis to ru., = 50.

5) «click button "Calculate index", Programita shows you the
pattern and calculates the O-ring function of the data.

6) For univariate analysis of pattern 2 assuming a double-

clustered process enable the check box "Calculate confi-
dence interval" on the upper left. A window with settings
for null models appears, select "cluster process". A win-
dow with a selection of cluster process null models ap-
pears, enable "Univariate double cluster".

7) The windows Fit of Neyman-Scott models to data and “Univariate dou-
ble-cluster Neyman-Scott” appears. Select the option
“bivariate” in this window and provide the results of the
univariate analysis of pattern 1:
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e o0, =14.1 and 100p; = 0.0083 (some 21 parent events).

8) Click “ok” in the window “Univariate double-cluster Ney-
man-Scott” and again “ok” in the window “Null models”.
Programita calculates the g- and the L-function for r =1
to Imax and the window Fit of Neyman-Scott models to data appears. Se-
lect rpax = 1 and r, = 100 and click the button “fit”,
“Zoom” and “fit”.

9) Programita now searches the parameters of the bivariate
Neyman-Scott model that simultaneously fits the g- and L-
function of your data best (red line: fit, black line:
data) :
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10)

Programita finds the best fit
e o0, = 3.3 and 100p;, = 0.02793 (some 70 parent events).

For simulation of the null model click “ok” at the window
Fit of Neyman-Scott models to data and click “Calculate index”. Pro-
gramita simulates the confidence intervals of the univari-
ate analysis of pattern 2 using the best parameter esti-
mates for o, and p, and 70 type 1 points as parents. The
simulation of 19 replicates of the Neyman-Scot null model
shows that the data are well within the confidence enve-
lopes of the null model:

Undwarixte (0-ring stwtiotic (W-M)
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Third step: bivariate analysis of using a double-cluster model
(C_A 5b.res).

1)

Highlight the data file "A 1.dat" in window Inputdata file. This
data set gives the location of dead trees and recruits at
a meter scale, but has a resolution of 1 centimeter.
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select "List" in How are your data organized
select "List with coordinates, no grid" in Select modus of
data. A window opens asking you to provide a cell size. In-
sert "1.00".
click the button "change" in set maximal radius rmax and set the
maximal scale r of the analysis to ru., = 50.
click button "Calculate index", Programita shows you the
pattern and calculates the O-ring function of the data.
To determine Monte Carlo confidence intervals for a
bivariate Neyman-Scott null model enable the check box
"Calculate confidence interval" on the upper left. A win-
dow with settings for null models appears, select "cluster
process". A window with a selection of cluster process
null models appears, enable "Pattern 2 cluster process
with parents = pattern 1".
The window Fit of Neyman-Scott models to data appears and asks you to
provide the results of the univariate analysis of pattern
1. This data are important for performing the fit. Insert
e o0, = 14.1 and 100p, = 0.0083
e o0, = 3.3 and 100p, = 0.02793
Click “ok” in the window for inserting the results of the
univariate analyses and again “ok” in the window for null
models.
Programita calculates the g- and the L-function for r =1
to Imax and the window Fit of Neyman-Scott models to data appears. Se-
lect ruax = 1 and rg = 35 and click the button “fit”.
Programita now searches the parameters of the bivariate
Neyman-Scott model that simultaneously fits the g- and L-
function of your data best (red line: fit, black line:
data) .
Programita does not find an appropriate fit for this data
since the fitted number of parents (some 224) does always
far exceed the number of adult trees (= 88). Playing
around with different tuning constants does not change
this result.
We conclude that we have to reject the hypothesis that the
recruits are directly linked to adult trees.
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4.8. Bivariate hard- and soft-core processes

The bivariate soft-core null model is a straight forward generalization of the
univariate null model and follows basically equation HC4:

d"? ford<é8
d) = HCS
Prc(d) { o (HCS)

where d is the distance between the provisional point an its nearest accepted
neighbour and p is an exponent that describes the “softness” of the process be-
tween the two points. If p — 0, equation HCS yields a hard-core, and for large
values of p (e.g., p = 11) equation HCS yields a very soft core with pyc(d) = 1 for
d<o.

Programita distributes in a first step all points of pattern 2 and in a second step
all points of pattern 2. Therefore we have to consider, in contrast to the univari-
ate case, three different situations:

1. both points are type 1 points
2. the provisional point is of type 2 and the nearest neighbour is of type 1
3. both points are type 2 points

Type 1 points are described by a disk with radius 61/2, and type 2 points by a
disk with radius /2. The softness of the relation between points is described by
three different exponents, describing the softness (1) between type 1 and type 1
points (p1), (2) between type 2 and type 1 points (p;2), and (3) between type 2
points (p2). The parameters for the three cases of the bivariate soft-core process
that follows equation HCS are:
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4.8.1. Implementation of the hard-core null model

Programita allows you to specify whether pattern 1 or/and pattern 2 has a soft-
core:

e Only pattern 1 has a soft-core:

You need to provide only the parameters p; and o) for pattern 1. Pattern
1 follows a soft-core null model, but the acceptance of a provisional type
2 point does not depend on the distance d to its nearest accepted
neighbor. Thus, the soft-core null model does not incorporate an interac-
tion between the two patterns.

e Only pattern 2 has a soft-core, but no interaction between patterns:
In this case you need to provide the parameters p;, p12, and J; for pattern
2. If the exponent p;, that describes the repulsion of type 2 points by
type 1 points is large (e.g., pi» = 11), acceptance of a provisional type 2
points does not depend on the distance d to its nearest accepted type 1
neighbor. Thus, the soft-core null model does not incorporate an interac-
tion between the two patterns.

e Only pattern 2 has a soft-core, and type 1 - type 2 interaction oc-

Ccurs:
In this case you need to provide the parameters p;, p12, and J; for pattern
2. If the exponent p,, that describes the repulsion of type 2 points by
type 1 points is small (e.g., p1> < 0.5), acceptance of a provisional type 2
points does depend on the distance d to its nearest accepted type 1
neighbor. Thus, this soft-core null model incorporates an explicit inter-
action mechanism between the two patterns.

e Both patterns have a soft core, but no interaction between patterns:
In this case you need to provide all parameters pi, p2, p12, 01, and o, for
patterns 1 and 2, but the exponent p;, that describes the repulsion of type
2 points by type 1 points is large (e.g., p12 = 11). In this case both pat-
terns show separately repulsion, but no interaction between the two pat-
terns is incorporated.

e Both patterns have a soft core, and type 1 - type 2 interaction oc-

Ccurs:
In this case you need to provide all parameters p;, p2, pi2, 01, and o, for
patterns 1 and 2, and the exponent p;, that describes the repulsion of
type 2 points by type 1 points is small (e.g., p12 < 0.5). In this case pat-
tern 1 shows repulsion (it was created independently on pattern 2). Pat-
tern 2 is repulsed by points of pattern 1 and points of pattern 2 and may
show an univariate structure with smaller scale repulsion (repulsion to
type 1 points) and larger scale aggregation (because type 2 points have
to be squeezed into the gaps of the existing pattern 1).
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4.8.2. Example for soft core with interaction (HC_5.res)

This artificial data set was created with a soft core process with parameters p;
=11, 6, =2 cells, p» = 0.1, 6, = 3 cells, and p1, = 0. Thus, pattern 1 is basically a
random pattern, type 2 points perceive type 1 points as having a hard core (there
is always a minimal distance of 01 = & + & = 5 between type 2 and type 1
points), and type 2 points have a soft-core in relation to other type 2 points. We
will first explore the univariate structures of two component patterns before
performing the bivariate analysis.

1)

(G2 OV N}

For univariate analysis of pattern 1 highlight the data
file "HC5.dat" in window Input data file. The data file was cre-
ated with a bivariate hardcore null model with parameters
p. =11, &6 = 2 cells, p, = 0.1, 6 = 3 cells, and p;, = 0.
select "List" in How are your data organized

select "Analyze all data in rectangle" in Give modus of analysis
select "Data are given as list in grid" in Select modus of data
click button "Calculate index" and Programita shows you
the pattern:
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Enable the check box "Calculate confidence interval" on
the upper left. A window with settings for null models
appears. Select "Pattern 1 and 2 random", 99 simulation
of the null model and click the button "Calculate index".
Programita now performs the univariate analysis for pat-
tern 1 using a CSR null model. Pattern 1 is indeed a ran-
dom pattern (HC 5 unipatl.res):
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Univariate 0. ring statistic (WMD)
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For univariate analysis of pattern 2 highlight the data
file "HC5 21.dat" in window Input data file.

select "List" in How are your data organized

select "Analyze all data in rectangle" in Give modus of analysis
select "Data are given as list in grid" in Select modus of data
click button "Calculate index" and Programita shows you
the pattern and the univariate analysis without confi-
dence envelopes:
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The univariate O-ring statistic suggests that pattern 2
has a hard core with & = 4 cells. To test this hypothesis
Select "Pattern 1 and 2 random", 99 simulation, and en-
able the checkbox “Hard core”. The window Hard core null model
opens:

Haid core null model
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Enable the check box "Radius of pattern 1" (univariate
analysis) and provide the hardcore radius of pattern 1.
The minimal distance between two points is the double of
the hardcore radius. Next provide the hardcore radius and
the exponent. The example is for a hard-core null model,
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therefore select the exponent p = 0, click "ok", and
click the button "Calculate index" "Radius of pattern 1"
(univariate analysis) and provide the hardcore radius of
pattern 1. The minimal distance between two points is the
double of the hardcore radius, thus insert a radius of 2
cells. Because the hypothesis is a hard core, select the
exponent p = 0, click "ok", and click the button "Calcu-
late index". Programita now performs the simulations of
the univariate hard-core null model (HC 5 unipatZa.res):
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The null model does not well describe the data at scale
r = 4. This result suggests that the process is perhaps a
(almost hard-core) soft core process with a larger ra-
dius. Thus, we repeat the analysis with p = 0.1 and a ra-

dius of 3 cells (HC_5 unipat2b.res):
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This parameter now describe the pattern at scales r = 1 -
4 well, but there is a small departure at scale r = 5.

For the bivariate analysis highlight the data file
"HC5.dat" in window Input data file.

select "List" in How are your data organized

select "Analyze all data in rectangle" in Give modus of analysis
select "Data are given as list in grid" in Select modus of data
click button "Calculate index" and Programita shows you
the pattern and the wunivariate analysis without confi-
dence envelopes:
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The bivariate O-ring statistic suggests a hard-core of
pattern 1 with a distance &, = 4 or 5 cells. Therefore
enable the check box “Radius of pattern 1” and “Radius of
pattern 2”. Since pattern 2 may have a disc with radius 3
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cells select for the random pattern 1 a radius of 2 cells
p. = 11, and p;, = 0. Select for pattern 2, as in the pre-
vious example (HC 5 unipat2b.res)), a radius of 3 cells
and p, = 0.1.

21) click "ok", and then the button "Calculate index". Pro-
gramita now performs the simulations of the bivariate
hard-core null model (HC 5.res):
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The Dbivariate hard-core null model describes the data
well.

4.8.3. Reanalysis of example Indep3 (HC_6.res)

The data set of example Indep 3.res was created using used a bivariate soft-core
process to simulate repulsion of points of pattern 2 in relation to points of pattern
1 that previously was created by a CSR process. The parameters of the bivariate
soft-core process were: radius = 3 and exponent p = 5 (for pattern 1), radius = 3
and exponent p = 5 (for pattern 2), and the exponent for repulsion of pattern 2 by
pattern 1 was p = 0.1. Thus, points of pattern 2 are placed at random with respect
to already accepted points of pattern 2, but the probability pyc(d) to accept a
provisional point of pattern 2 with a nearest neighbour of pattern 1 at distance d
is given through equation HC5 with 0 = 3 +3. Note that the univariate analysis of
pattern 2 reveals aggregation at scales » = 1 - 5 which is a result of is non-
random creation process.

1) highlight the data file "repulsionl.dat" in window Input data
file. Pattern 1 is a random pattern and pattern 2 was created
with an explicit repulsion mechanism: random provisional
points of pattern 2 were only accepted if they had a near-
est neighbor distance of at least & = 6 to a point of pat-
tern 1 and the probability of acceptance decreased with
increasing distance to a point of pattern 1.

2) select "List" in How are your data organized.
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select "Analyze all data in rectangle" in Give modus of analysis
select "Data are given as list in grid" in Select modus of data
click button "Calculate index" and Programita shows you
the pattern and the univariate analysis without confidence
envelopes:
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The univariate O-ring statistic of pattern 1 indicates a
random pattern, and the bivariate O-ring statistic indi-
cates repulsion of type 2 points by type 1 points.

To perform the univariate analysis of pattern 2 without
confidence envelopes highlight the file "repul-
sionl 21.dat" in window Inputdatafile and click button "Calcu-
late index". The univariate O-ring statistic of pattern 2
indicates aggregation, and the bivariate O-ring statistic
indicates repulsion between type 1 and type 2 points.

With this diagnosis we parameterize the bivariate soft-
core model. The univariate analysis of pattern 1 suggests
a random pattern, thus select p; = 11. The univariate
analysis of pattern 2 suggests no repulsion of type 2
points (it shows aggregation), therefore select p, = 11.
Because there 1is interaction between type 1 and type 2
points with a relatively sharp soft-core enable the check
box “Radius of pattern 1” and “Radius of pattern 2”. Be-
cause the interaction between type 1 and type 2 points
shows a sharp soft-core with a minimal distance J ~ 6 se-
lect p; = 0.1 and for both patterns a radius of 3 cells.
click "ok", and then the button "Calculate index". Pro-
gramita now performs the simulations of the bivariate
hard-core null model (HC 6.res):
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The Dbivariate hard-core null model describes the data
well. The interesting feature of this process is that the
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aggregation of pattern 2 was not caused by an explicit ag-
gregation mechanism but through repulsion by type 1 points
which forced type 2 points into the random gaps left by of
type 1 points.

4.8.4. Example for cluster and hardcore (HC_7_res)

This is the bivariate variant of example HC 4.res and shows the combination of
the hardcore null model with a bivariate Neyman-Scott cluster null model, con-
tinuing the analysis of example NS_4.res. The pattern of adult trees showed at a
fine resolution of 0.25 m a marked hard-core up to Im and a peak at some 2.5 m,
and the bivariate O-ring statistics at a fine resolution of 0.25 m showed a marked
hard-core up to 1m and two peaks at some 3m and 6 m.
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Highlight the data file "A 1.dat" in window Inputdata file. This
data set gives the location of adult trees and recruits at
a meter scale, but has a resolution of 1 centimeter.
select "List" in How are your data organized

select "List with coordinates, no grid" in Select modus of
data. A window opens asking you to provide a cell size. In-

sert "0.5", thus using a cell size of 50cm.
click the button "change" in set maximal radius rmax and set the
maximal scale r of the analysis to r.x = 50.
click button "Calculate index", Programita shows you the

pattern and calculates the O-ring function of the data.

To determine Monte Carlo confidence intervals for the
bivariate Neyman-Scott null model enable the check box
"Calculate confidence interval" on the upper left. A win-
dow with settings for null models appears, select "cluster

process". A window with a selection of cluster process
null models appears, enable "bivariate Neyman-Scott" and
press ok.

Programita calculates the g- and the L-function for r =1

Lo Inax and the window Fit of Neyman-Scott models to data appears.
Select rp.x = 15 and rg = 100. To optimize the g- and the
L-function simultaneously enable "both, L- and g-
function". Click the button "fit" and Programita searches
the parameters of the bivariate Neyman-Scott model that
simultaneously fits the g- and IL- function of your data
best (red line: fit, black line: data).

To optimize the parameter fit, press the button "Zoom".
Programita now determines the probable range of the pa-
rameters. Next, press "fit" and Programita now searches
the best fit. We find Gpest = 36.6 and pPrese = 0.0000424. In-
sert the results of the previous univariate analysis of
adult trees (HC 4.res): oo = 29.5 and p; = 0.0000205., and
recruits: o, = 25.47, p, = 0.0000227 and press “check”.
Programita calculates a theoretical o = 27.6. Insert o =
25 in the window “Fitted parameters” and click “ok”.
Enable the check box “Hard core” and the window Hard core null
model appears. Enable the checkboxes "Radius of pattern 1"
and "Radius of pattern 2" and provide the hardcore radius
of pattern 1 and 2 (in both cases a value of 2). The mini-
mal distance of two points is the double of the hardcore
radius (i.e., &6 = 4). Provide the exponent p = 0 for hard-
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core for p:;, p,, and p;, and click "ok". The window Hard core
null model disappears.

click button "Calculate index" and Programita performs the
99 simulations of the combined cluster and hard-core null
model:

Univariste (- ring statistic (W.M) Bivariste 0-ring setiotie (W-M)
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Indeed, the combined hard-core and cluster null model de-

scribes the data well, even the first peak at 3m of the

bivariate O-ring statistic, but recruits still show at-
traction at scale 6m.
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4.9. Recommendations for selection of bivariate null models

The bivariate analysis is more complicated than the univariate analysis because
there are several basic null models (independence, random labeling, and
antecedent condition) and because null models from the univariate case can be

combined in several ways to obtain specific bivariate null models. Therefore, it
is especially important to define the biological question, the hypothesis, and the
biological circumstances carefully to be able to find an adequate null model.

1.

Visualize the patterns and perform univariate analysis of both patterns.
Define the basic null hypothesis. If the univariate analysis indicated that
both patterns were random, they are also independent. Otherwise, there
are three conceptually different possibilities (i.e., independence,
random labeling, antecedent condition) that lead to different proce-
dures for null models and different values for the expected g- or K- func-
tion under absence of interaction between the two types of points:

a. Two different processes may have created the two patterns and in-
teractions between both types of points may have occurred. In this
case the null hypothesis of independence may be appropriate.

b. Two different processes created the two patterns, but pattern 1 al-
ready existed when pattern 2 was created. In this case the
antecedent condition needs to be considered by selection of the
appropriate null model. The locations of pattern 1 remain fixed
and the null model distributes only pattern 2 in accordance to a
specific univariate null model.

c. The locations of both patterns were probably created by the same
stochastic process and the labels (or marks) correspond to some
events that acted independent from the process that created the lo-
cations of the points (e.g., tree dead or disease spread). In this
case the null model of random labeling is appropriate.

A common environmental factor affected both patterns in the same way:
In this case, the two patterns are heterogeneous and are merged in joint
clusters. Under this circumstance, a random labeling null model may be
appropriate if the environmental heterogeneity constrained the locations
of both patterns in the same way. A patchy distribution of resources can
also be modeled with a bivariate Neyman-Scott cluster process. This null
model includes the case of partly overlapping clusters (i.e., some clusters
are only occupied by type lor type 2 points), and each pattern may have a
different cluster size. However, there is also heterogeneous Poisson proc-
ess null model with a similar effect: keep the locations of pattern 1 fixed
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and randomize pattern 2 according to a heterogeneous Poisson process.
An appropriate intensity function can be constructed using a moving win-
dow estimate of the joined intensity of pattern 1 and pattern 2, but with a
relatively small radius R.

The two patterns were created by different processes: In this case, you
might use the toroidal shift null model to test for independence, i.e.,
keeping pattern 1 fixed and shifting the whole of pattern 2 by treating the
study region as a torus. Of course, this works only if you have a rectangu-
lar study region.

The two patterns were created by different processes related to different
heterogeneous environmental factors: The appropriate null model for this
hypothesis is to keep one pattern fixed and preserve the larger-scale het-
erogeneity of the other pattern, i.e., use a heterogeneous Poisson process
to simulate pattern 2, and vice versa. An appropriate intensity function
can be constructed using a moving window estimate of the intensity of
pattern 2. The radius R of the moving window decides how closely you
mimic the heterogeneity of pattern 2.

The two processes were linked: An example for this possibility is a clus-
tered distribution of seedlings around adult trees e.g., due to a limited
range of seed dispersal. In this case, the locations of trees have to be pre-
served, and the seedlings can be randomized following a Neyman-Scott
process null model under antecedent condition where the parents are
given through the pattern of adult trees. In this case, only one parameter
of the cluster process has to be fit since the intensity of the parents is
given through the density of pattern 1. Note that a similar effect of clus-
tering of seedlings around trees may arise if both patterns are strongly
impacted by the same environmental factor.
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