2024/05/18 10:14 1/5 Demandas Conflitantes

BASE

Demandas Conflitantes

"Everything's a tradeoff — now that I can walk upright, I can't wiggle my ears any more."

Para criar um modelo onde exista demanda conflitante (tradeoff) entre colonização e competição em um sistema multiespécies, precisamos primeiro criar uma cenário onde há um variação na habilidade de colonização/competição das espécies. Para tanto vamos montar uma comunidade onde a habilidade competitiva é inversamente relacionada a habilidade de colonização, uma clássica demanda conflitante. No equilíbrio ou em intensidades baixas de distúrbios, nossa comunidade virtual teria a espécie melhor competidora com maior proporção de manchas ocupadas, assim como no modelo de coexistência de duas espécies. Vamos estabelecer que essa proporção seja 20% de manchas ocupadas e em seguida estabelecer uma seguência ordenada

hierárquica onde a próxima melhor competidora ocupará 20% das manchas restantes e a seguinte 20% do que restou depois, até nossa última espécie (pior competidora) ocupar uma fração de 20% daquelas últimas manchas não ocupadas por nenhuma das outras espécies. Nesse caso, teríamos o seguinte cenário na distribuição de abundâncias das nossas espécies:

$$f {sp i}=f {sp1}(1-f {sp1})^{i-1}$$

onde:

\$_i\$ = posição na ordenação de abundância na comunidade;

 f_{sp_i} = proporção de manchas ocupadas pela espécie cuja ordem na classificação de abundância é i

\$f {sp1}\$ = proporção de manchas ocupadas pela espécie mais abundante.

O Pesquisador David Tilman ¹⁾ demonstrou que esse cenário de distribuição de abundâncias é possível quando todas as espécies experienciam a mesma taxa de extinção/mortalidade (\$pe\$) e quando a taxa de colonização de cada espécie é dada por:

$$sc i = \frac{pe}{(1-f \{sp1\})^{2i-1}}$$

O Modelo

O mesmo pesquisador generalizou a equação de variação da proporção de manchas ocupadas ao longo do tempo para n espécies, como sendo:

$$f(sp_i) dt = c_if_{sp_i}(1-\sum_{j=1}^{i}f_{sp_j}) - pe_if_{sp_i} - (\sum_{j=1}^{i-1}c_jf_{sp_j}) dt = c_if_{sp_i} - (\sum_{j=1}^{i-1}c_jf_{sp_j}f_{sp_j})$$

Onde:

\$\frac{df_{sp_i}}{dt}\$: variação na fração de manchas ocupadas pela espécie i;

\$pe i\$: probabilidade de extinção 2) da espécie i em uma mancha;

Lendo a equação

Tente entender o que cada parte da expressão do lado direito da equação significa, o básico é:

A variação na proporção de manchas ocupadas por uma espécie de posição de abundância *i* na comunidade, em um período muito pequeno de tempo é igual:

- as manchas vazias que foram colonizadas pela espécie i,
- menos as manchas onde ouve extinção da espécie i,
- menos as manchas ocupadas onde um melhor competidor³⁾ chegou .

O objetivo desse roteiro é simular essa dinâmica ao longo do tempo. Para isso criamos uma função com base nesse modelo, com a seguinte sequência de eventos:

- 1. cria a ordenação das espécies;
- 2. calcula o coeficiente de colonização como acima;
- 3. se o fi (proporção de manchas ocupadas no início) é um valor único, preenche essa proporção de manchas com (s) espécies ao acaso;
- 4. se fi é um vetor de s valores, esses são utilizados para o preenchimento inicial das manchas sendo as proporções no vetor fi relacionadas à ordem das espécies, começando com a espécie melhor competidora para a pior;
- 5. inicia ciclos até tmax;
- 6. a cada ciclo calcula a extinção para cada espécie e sua colonização respeitando a hierarquia de competição para decidir qual espécie é deslocada da mancha e qual permanece;
- 7. guarda a proporção de manchas ocupadas por cada espécie a cada ciclo;
- 8. produz o gráfico e retorna o resultado de número de manchas ocupadas por cada espécie a cada tempo.

Argumentos

opção	parâmetro	definição
data set	objeto no R	guarda os resultados
Maximum time	tmax	Número de iterações da simulação
columns	cl	número de colunas de habitat da paisagem
rows	rw	número de linhas de habitat da paisagem
INITIAL PARAMETERS		
Occupied patches	fi	proporção de manchas ocupadas no início por todas espécies
Number of Species	S	número de espécies no início da simulação
Moratality rate	ре	probabilidade de extinção por mancha ou mortalidade

http://ecovirtual.ib.usp.br/ Printed on 2024/05/18 10:14

2024/05/18 10:14 3/5 Demandas Conflitantes

opção	parâmetro	definição
Best Competitor	ISPI	prop. manchas ocupada pela melhor competidora no
Abundance (sp1)		equilíbrio
DISTURBANCE PARAMETERS		
Frequency	fr	frequência: 1 ⇒ distúrbio em toda iteração
Intensity	int	intensidade: 1 → todas as manchas afetadas

Testando o Modelo

Vamos testar o nosso modelo com 10 espécies (S=10), 400 manchas (cl=20, rw=20), com a espécie competidora tendo o potencial de ocupar 20% das manchas(fsp1) e probabilidade de extinção (mortality rate) pe = 0.04. Vamos rodar primeiro com 200 ciclos de tempo (fsp1) e deixar de lado o distúrbio (fsp1) por enquanto. Vamos começar com uma proporção de manchas ocupadas no início de 10% (fsp1), simulando uma situação de colonização de manchas disponíveis.

tmax= 200 cl=20 rw=20 fi=0,1 fsp1=0,2 pe=0,04 S=10 fr=0 int=0

- Aumente tmax=1000, há diferença na interpretação dos resultados? Mantenha tmax=100
- Aumente o número de manchas para cl=100; rw=100. Qual a diferença? Expiique.
- 3. Aumente o número de manchas ocupadas no início para 50% (fi=0,5)

Aumentar o tempo ou o número de manchas faz com que simulação demore a rodar, aguarde!!

Como percebemos que o número de manchas na simulação, associado a quantas estão ocupadas no início, está relacionada a extinção estocásticas das espécies, varnos manter esses parâmetros altos e fixos (cl=100, rw=100, fi=1) para evitar a perda de muitas espécies. Como vimos também que o sistema demora para estabilizar vamos manter também o parâmetro tmax alto (tmax =1000).

Interprete o resultado do modelo em termos de:

- 1. demanda conflitante de colonização x competição,
- substituição de espécies e
- 3. sucessão ecológica.

Incluindo distúrbios

Vamos simular agora um sistema com distúrbios. Nos modelos de metapopulação vimos que a probabilidade de extinção (\$p_e\$) podia ser interpretada como distúrbio, já que atingia uma parte das manchas tornando-as vagas para posterior colonização. Aqui, vamos interpretar o \$p_e\$ como a mortalidade basal das populações, não mais como distúrbio. Essa probabilidade de morte é constante e igual para todas as espécies no nosso modelo. Vamos criar distúrbios na nossa comunidade que acontecem a uma certa frequência (*fr*) de intervalo de tempo constante e uma certa intensidade (*int*) relacionada à proporção de manchas afetadas. Portanto menores valores de *fr* implicam em maior intervalo de tempo entre os distúrbios (ex: 0.1 indica que a cada 10% de tempo total há um distúrbio; 1 indica que a todo intervalo há distúrbio) e quanto maior o valor de *int* maior é o número de manchas afetadas. Vamos manter nossas simulações constantes com relação às outras variáveis e vamos variar apenas os parâmetros de distúrbio:

tmax=1000,
cl=100,
rw=100,
S=10,
fi=1.0,
fsp1=0.2
pe=0.01,

Aplicando distúrbios

- 1. rode uma simulação sem distúrbio para ser seu controle no experimento de distúrbio
- faça predições sobre o que espera que aconteça com o sistema com o aumento do distúrbio.
 Escreva suas predições.
- 3. mantenha a intensidade de distúrbio em 10% das manchas (int = 0.1) e aumente a frequência (0,01; 0,15; 0,25; 0,4; 0,5 até 1)
- 4. mantenha agora a frequência de distúrbio constante em 10% dos tempos (fr=0.1) e varie a intensidade (0,05; 0,1; 0,2; 0,3; 0,6; 0,8;...)
- 5. avalie se os resultados obtidos pela simulações corroboram sua predições. Há pontos discordantes? Consegue elaborar uma explicação alternativa?

Algumas questões para orientar sua interpretação:

- 1. Em que situações as melhores competidoras se dão melhor?
- 2. E as piores competidoras?
- 3. Consegue detectar algum padrão na coexistência de espécies com essas poucas simulações?

Distúrbio Intemediário

http://ecovirtual.ib.usp.br/ Printed on 2024/05/18 10:14

2024/05/18 10:14 5/5 Demandas Conflitantes

É creditado ao pesquisador Joseph Connell (1978) a teoria do distúrbio intermediário, apesar dela ter sido proposta por J. Phillip Grime alguns anos antes em 1973, tratando de exclusão competitiva em plantas. O trabalho de Connel (veja referência) pode ter tido preferência na citação da teoria por ter contrastando dois ambientes muito distintos e reconhecidamente entre os mais diversos do planeta (recifes de corais e florestas tropicais). Nele o pesquisador advoga que o principal fator relacionado à manutenção da alta diversidade nesse ecossistemas é a presença de distúrbios em frequências e intensidade intermediárias. Suas simulações apoiam essa teoria?

Atenção

As simulações e perguntas do tópico **Distúrbios** (*Aplicando Distúrbios e Distúrbio intermediário*) devem ser enviados ao monitor.

Referências

- Connell, J. H. (1978) Diversity in tropical rain forests and coral reefs. Science 199(4335):1302 -1310
- Hastings, A. (1980) Disturbance, coexistence, history and competition for space. Theoretical Population Biology, 18:363–373.
- Stevens, M.H.H. (2009) A primer in ecology with R. New York, Springer.
- Tilman, D. (1994) Competition and biodiversity in spatially structured habitats. Ecology, 75:2-16.

RCMDR, multipopulações, comunidades, competição, distúrbio, sucessão

1)

veja referência no final da página

21

ou mortalidade

3)

espécies de posição de abundância 1 até i

From:

http://ecovirtual.ib.usp.br/ -

Permanent link:

×

http://ecovirtual.ib.usp.br/doku.php?id=ecovirt:roteiro:sucess:tradeoff_base&rev=1462875558

Last update: 2016/05/10 07:19