

Metapopulações com chuva de propágulos -Roteiro no EcoVirtual

Neste exercício, iremos simular a dinâmica de uma metapopulação em que as probabilidades de extinção e de colonização de manchas pela nossa *espécie virtual* são constantes (modelo de chuva de propágulos). Neste modelo há sempre uma fonte constante de imigrantes que podem colonizar qualquer mancha vazia, por isso o nome "chuva de propágulos".

Nesse modelo, a variação da fração de manchas ocupadas no tempo é descrita pela seguinte equação geral:

$$frac{df}{dt} = I - E$$

onde I é a taxa de entrada de migrantes, e E a taxa de saída. A partir dele podemos definir um modelo simples para a dinâmica de ocupação de manchas que formam uma metapopulação:

$$s^{c} = p_i(1 - f) - p_e f$$

onde $p_i \le a$ probabilidade de imigração ou colonização, $p_e \le a$ probabilidade de extinção e $f \le a$ fração de manchas ocupadas (número de manchas ocupadas / número total de manchas). Esses, portanto são os parâmetros do nosso modelo.

Apesar de ser matematicamente o modelo mais simples, historicamente esse modelo foi descrito mais recentemente que os outros modelos de metapopulações que iremos apresentar ¹⁾. Uma característica importante desse modelo é que ele não é fechado, o que biologicamente é mais complexo.

Equilíbrio

O nosso modelo simples, descrito pela equação diferencial acima, nos permite calcular uma atributo importante do sistema: **a solução no equilibrio**. O equilíbrio nesse caso está relacionado à estabilidade da fração de manchas ocupadas ao longo do tempo, o que no nosso modelo é definido por: $\frac{d}{dt} = 0$

Um pouco de álgebra simples, juntando as duas expressões acima descritas, nos permite calcular a fração de manchas ocupadas no equilíbrio:

$$$$\hat{f} = \frac{p_i}{p_i + p_e}$$
\$

Poderíamos ir um pouco mais longe e analisar a estabilidade desse equilíbrio, por enquanto apenas vamos assumir que esse equilíbrio é estável. Veja o roteiro de Estabilidade em sistemas dinâmicos - Roteiro interativo para definições de tipos de equilíbrios.

Simulando Metapopulações

Vamos imaginar agora um cenário de uma paisagem virtual com um certo número de manchas de habitat que podem ou não estar ocupadas pela nossa espécie. Por praticidade vamos definir nossa paisagem um número de colunas (\$cl=20\$) e de linhas (\$rw=20\$), totalizando 400 manchas. Vamos definir também uma proporção de manchas ocupadas no tempo inicial (ocupância no tempo zero \$f0 = 0.25\$, ou 100 manchas ocupadas). A nossa espécie virtual tem uma probabilidade de imigração de 10% (\$pi=0.1\$) e uma probabilidade de extinção de 5% (\$pe=0.05\$).

Pergunta

Bom, até aqui sabemos que nossa paisagem tem uma certa capacidade em acomodar a espécies, definida pelo número de manchas de habitat disponível e que 1/4 dessa manchas estão ocupadas no momento. Definimos também que a espécie tem uma probabilidade de colonização maior que a de extinção nas manchas. Nosso pergunta é: qual o destino da população, nessa paisagem, caso as condições ambientais não se modifiquem e as taxas de extinção e migração permaneçam constantes?

Resposta por simulação

Uma forma de responder a questão acima é simular essa paisagem e as probabilidades de extinção e colonização. Imagine um jogo de tabuleiro com 400 casas, representando nossa paisagem, sendo 100 delas ocupadas por peças brancas (representando nossa espécie) no início. Nesse jogo, a cada rodada, sorteamos um número aleatório de 1 a 100 (um super dado com 100 lados!) para cada casa do tabuleiro. Caso a casa esteja ocupada e o número sorteado estiver entre 1 e 5 (probabilidade de

http://ecovirtual.ib.usp.br/ Printed on 2023/11/03 20:23

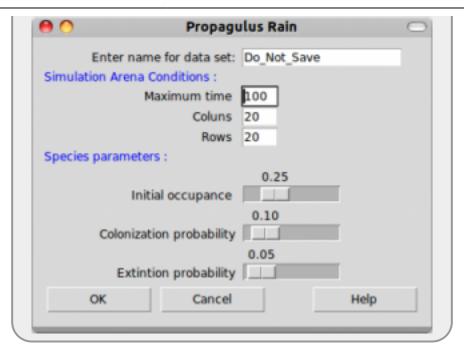
0.05), retiramos a pedra; caso a casa esteja desocupada e o número sorteado for entre 1 e 10 (probabilidade de 0.1), colocamos uma nova peça. Caso essas condições não aconteçam mantemos a casa do tabuleiro da maneira que encontramos.

Agora só precisamos fazer isso muitas vezes e observar a cada tempo quais casas foram colonizadas, quais foram extintas e quais permanecem ocupadas, anotando a proporção de manchas ocupadas (nossa variável de interesse nesse caso!).

Usando o EcoVirtual

Como fazer isso com um tabuleiro de 400 casas tomaria muito tempo, além de ser muito tedioso, vamos usar o *EcoVirtual* para fazer o serviço para nós.

Para prosseguir você deve ter o ambiente **R** com os pacotes **Rcmdr** e **Ecovirtual** instalados e carregados. Se você não tem e não sabe como ter, consulte a página de Instalação.


Caso já tenha o R e pacotes instalados

Carregue o pacote principal **RcmdrPlugin.EcoVirtual** pelo menu do R **Pacotes > Carregar Pacotes**, ou pela linha de comando com o código:

library("RcmdrPlugin.EcoVirtual")

Caso tenha seguido as instruções da página de instalação, partindo da premissa que as instruções funcionam, terá na tela a janela do Rcmdr aberta e uma opção de menu *EcoVirtual*. Clique nesse menu e depois em *Metapopulation* em seguida em *Seed Rain...*. A seguinte janela de opções deve se abrir:

⁻ http://ecovirtual.ib.usp.br/

Os parâmetros da função são:

Opção	Parâmetro	Definição
data set	objeto no R	guarda os resultados
Maximum time	\$tmax\$	número de iterações da simulação
columns	\$cl\$	número de colunas de habitat da paisagem
rows	\$rw\$	número de linhas de habitat da paisagem
initial occupancy	\$f0\$	número de manchas ocupadas no início
colonization probability	\$pi\$	probabilidade de colonização
extinction probability	\$pe\$	probabilidade de extinção

Produza simulações para entender como os parâmetros do modelo afetam a trajetória e o resultado final (equilíbrio), abaixo algumas sugestões de combinação de parâmetros:

Simulação	\$tmax\$	\$cl\$	\$rw\$	\$f0\$	\$pi\$	\$pe\$
1	100	20	20	0,2	0,5	0,2
2	100	20	20	0,2	0,5	0,5
3	100	20	20	0,05	0,2	0,8
4	100	20	20	0,05	0,05	0,8
5	100	20	20	0,10	0,05	0,9
6	100	10	10	0,05	0,05	0,5
7	100	5	5	0,10	0,05	0,95
8	100	20	20	0,01	0,05	0,95
9	100	5	5	0,01	0,9	0,99
10	100	20	20	0,9	0,9	0,99
11	100	5	5	0,01	0,1	0,99

http://ecovirtual.ib.usp.br/ Printed on 2023/11/03 20:23

Outras Perguntas

Agora é com vocês! Tentem responder às seguintes perguntas:

- Quando você rodar mais de uma vez a função com os mesmos parâmetros o resultado é o mesmo? Por quê?²⁾
- O equilíbrio do sistema é estável, instável ou neutro?
- O que acontece com a variação na fração de manchas ocupadas ao longo do tempo quando:
 - o número de manchas é muito grande? E guando é muito pequeno?
 - e se as probabilidades de extinção e colonização são muito altas?
 - e se forem muito baixas?
- E quando a fração inicial (f0) é muito diferente da fração em equilíbrio \$F=\frac{p i}{p i+p e}\$?
- Quais condições levam à extinção da população na paisagem neste modelo?

Dicas

- Para responder às perguntas acima você precisa comparar resultados de diferentes simulações. Você pode salvar os gráficos do R clicando com o botão esquerdo do mouse na janela contendo o gráfico!
- Note que no final são apresentados dois gráficos, um mostrando o cenário da paisagem em quatro tempos e outro com a variação da proporção das manchas ao longo do tempo. Um pode esconder o outro, portanto movimente as janelas para poder visualizar todos.
- As janelas gráficas não são fechadas entre as simulações. De tempos em tempos, salve aquelas que interessam e feche as outras.

Para saber mais

- Gotelli, N. 2007. Ecologia. Londrina, Ed. Planta. Capítulo 4.
- Stevens, M. H. 2009. A primer of ecology with R. New York. Springer. Capítulo 4.
- Gotelli, N. 1991. Metapopulation models: the rescue effect, the propagule rain, and the core-satellite hypothesis. The American Naturalist, 138: 768-776. pdf no site do autor

RCMDR, uma população, metapopulações, chuva de propágulos

1)

Esse modelo foi descrito por Nicholas Gotelli em 1991, veja referências no final dessa página

Você deve entender isto para responder várias das questões seguintes.

From:

http://ecovirtual.ib.usp.br/ -

Permanent link:

http://ecovirtual.ib.usp.br/doku.php?id=ecovirt:roteiro:metap_uma:metap_chuvarcmdr

Last update: 2016/05/10 07:19

⁻ http://ecovirtual.ib.usp.br/

Last update: 2016/05/10 ecovirt:roteiro:metap_uma:metap_chuvarcmdr http://ecovirtual.ib.usp.br/doku.php?id=ecovirt:roteiro:metap_uma:metap_chuvarcmdr 07:19

http://ecovirtual.ib.usp.br/ Printed on 2023/11/03 20:23