

Dinâmica populacional denso-independente em tempo discreto - Roteiro no R passo-apasso

Uma população em que as taxas de nascimento e mortalidade são constantes tem um crescimento independente da densidade dela própria. Essa situação é geralmente relacionada à ausência de restrição ao crescimento, quando os recursos são ilimitados, mas pode também estar associada a uma depleção de recursos e à extinção da população.

Taxa de crescimento

Vamos imaginar agora uma população hipotética com taxas constante de crescimento e mortalidade e sem migrações. A cada ciclo de tempo relacionado a uma geração (T), o tamanho da população é o resultado do número de indivíduos da geração anterior mais números de nascimentos (B), menos mortes (D).

$$$N_{T+1} = N_T + B - D $$$

Podemos relacionar o número de mortes e nascimentos a um valor per capita:

- \$ B=bN T \$
- \$ D=dN_T \$

onde: b = taxa de nascimento per capita a cada geração; d = taxa de mortalidade per capita a cada geração. Note que a taxa não muda com o tamanho da população, entretanto, o número de nascimentos e mortes é proporcional ao tamanho populacional. Vamos apenas deixar claro mais uma premissa, para fins didáticos: os nascimentos e mortalidades ocorrem simultaneamente na população (p.ex: uma planta anual). Sendo T a escala de uma geração, podemos então dizer que :

- $N_{T+1} = N_T + bN_{T-d}N_T $$
- $N_{T+1} = N_T + (b-d)N_T$

se: \$r_T = b-d\$; fator de crescimento discreto

- $N_{T+1} = (1+r_T)N_T$
- $\frac{N}{T+1}{N} = 1+r T$

Como \$ 1+r_T \$ é uma constante, vamos designá-la como \$\lambda\$, um número positivo que mede o aumento proporcional da população de uma geração a outra. Portanto:

• \$\lambda=\frac{N_{T+1}}{N_T} \$, ou:

Projetando a População

Podemos então projetar a nossa população a cada ciclo de tempo (gerações). Por exemplo:

Se uma população com 100 indivíduos tem uma taxa per capita de natalidade de 0,8/ano e de mortalidade de 0,75/ano, qual o tamanho esperado da população no próximo ano?

```
N0=100
lamb=1+(0.8-0.75)
Nt1=N0*lamb
Nt1
```

Podemos também projetar a população para outras gerações, usando iterações:

```
(Nt2=Nt1*lamb)
(Nt3=Nt2*lamb)
(Nt4=Nt3*lamb)
```

Note que:

- \$N_{T4}= N_{T0} \lambda \lambda \lambda \lambda \$
- \$N_{T4}= N_{T0} \lambda^4 \$

Essa equação recursiva pode ser escrita como:

```
N {T}=\lambda^T N 0
```

Vamos pegar nosso exemplo anterior e projetá-lo para 10 ciclos de tempo.

```
N0=100
lamb=1+(0.8-0.75)
tmax=10
tseq=0:tmax
Nseq=N0*lamb^tseq
Nseq
plot(tseq, Nseq, type="l")
```

Tamanho Inicial

Vamos agora explorar o tamanho inicial da população.

- $\$N \ 0 = 10,20,30,40 \$$
- \$\lambda = 1,5\$
- \$ tempo = 1:10\$

http://ecovirtual.ib.usp.br/ Printed on 2024/05/06 11:12

Vamos agora colocar o mesmo gráfico em uma escala logarítmica para o eixo y.

```
par(mfrow=c(1,2))
matplot(0:10,t(Nt))
matplot(0:10, t(Nt), log="y")
```

O que está acontecendo?? Parece que todas as populações crescem igualmente quando estamos em uma escala logarítmica! Vamos investigar a equação que estamos usando, \$N_t=\lambda^T N_0\$ e tirar o log dos dois lados da equação:

```
$log{N_T} = log{\lambda^T N_0}$$ log{N_T} = (log{\lambda}) T + log{N_0} $
```

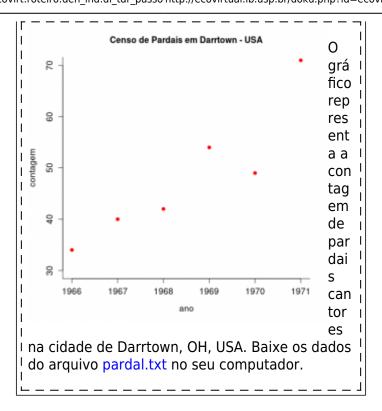
Essa equação lembra uma equação da reta y=ax+b, onde o intercepto é $\log(N_0)$ e a inclinação é igual a $\log{\lambda}$.

Desafio

 Demonstre graficamente que a inclinação das populações do exemplo acima são iguais a \$log{\lambda}\$.

Média do Crescimento Populacional

Vamos agora investigar os dados do tamanho populacional de uma espécie de pardal norte-americano (*Melopiza melodia*) partindo da premissa que essa população cresce em tempo discreto, já que os nascimentos ocorrem em um intervalo curto de tempo de nidificação a cada ano.



Vamos calcular os \$\lambda\$ para os cinco primeiros intervalos:

```
pardal<-read.table("pardal.txt", header=TRUE, sep="\t", as.is=TRUE)</pre>
str(pardal)
head(pardal)
pardal6= pardal[1:6,]
plot(pardal6$Count ~pardal6$Year)
lamb pardal=pardal6$Count[2:6]/pardal6$Count[1:5]
lamb_pardal
```

Agora, vamos calcular a projeção da população pela média aritmética e geométrica dos \$\lambda\$ e desenhar as projeções junto com os dados observados!

```
#media aritmetica
(lamb.art = mean(lamb_pardal))
#media geometrica
(lamb.geo = prod(lamb_pardal)^(1/5))
tseq=0:5
plot(tseq, pardal6$Count, pch=19)
N0=pardal6$Count[1]
lines(tseq, N0*lamb.art^tseq, lty=2, col="red")
lines(tseq, N0*lamb.geo^tseq, lty=3, col="blue")
```

• Qual das duas médias parece se ajustar melhor aos dados observados? Por quê?

Crescimento Discreto

Abaixo tem o código de uma função base para a projeção do crescimento de uma população, que

Printed on 2024/05/06 11:12 http://ecovirtual.ib.usp.br/

pode ser usada como estrutura básica para outras funções que iremos desenvolver no curso. No caso, é uma função com 3 argumentos: número de indivíduos no tempo 0 (N0), taxa de crescimento populacional (lamb) e o tempo máximo (tmax) de projeção da população.

```
cresc.geom= function(No=100, lamb=1.04, tmax=10)
{
  resulta <- rep(NA,tmax)
  resulta[1] <- No
     for (i in 2:tmax)
     {
      tam=resulta[i-1]*lamb
      resulta[i]=tam
     }
  return(resulta)
}</pre>
```

Ao copiar esse código na área de trabalho do R, um novo objeto é criado, de nome *cresc.geom*. Ele é um objeto da classe função que você pode usá-lo digitando o seu nome e especificando seus argumentos, como no exemplo a seguir:

```
resultado <- cresc.geom(No=10, lamb=0.98, tmax=100)
```

Note que o resultado da função, nesse caso, será guardado no objeto *resultado*. Para fazer um gráfico dos resultados pode utilizar o código abaixo:

```
plot(1:length(resultado), resultado)
```

Estocasticidade Ambiental

Flutuações ambientais podem exercer efeito na taxa de crescimento instantâneo da população. De uma forma simples, podemos imaginar que essa variação funcione como um ruído no r, como se a população em média tivesse uma taxa, mas a cada realização ela pudesse ser um tanto diferente devido a condições externas a ela própria. A implementação dessa estocasticidade ambiental em modelos contínuos é um pouco mais complicada, mas podemos imaginá-la como realizações em algum intervalo pequeno de tempo. Para um crescimento discreto a construção de simulações com estocasticidade ambiental é mais intuitivo: a cada realização o Lambda é afetado pela variação ambiental. Vamos fazê-la.

```
npop=10
n0=10
lamb.med = 1.2
lamb.sd= 0.4
lamb = rnorm(npop, mean=lamb.med, sd=lamb.sd)
N0=rep(n0,npop)
N1=lamb*N0
lamb=rnorm(npop, mean=lamb.med, sd=lamb.sd)
N2=N1*lamb
N3=N2*rnorm(npop, mean=lamb.med, sd=lamb.sd)
```

Last update: 2022/09/15 13:51

```
N4=N3*rnorm(10, mean=lamb.med, sd=lamb.sd)
N5=N4*rnorm(10, mean=lamb.med, sd=lamb.sd)
Nt<-rbind(N0, N1, N2, N3, N4, N5)
matplot(0:5, Nt, type="l", lty=2:7)
```

Desafio

É possível adaptar a nossas função anterior de crescimento discreto para que possa também modelar populações com estocasticidade ambiental!

Dicas

O primeiro passo sempre e pensar quais argumentos vamos precisar Nesse caso, temos apenas mais um argumento o *lamb.dp*: o desvio padrão de *lambda*. O resto continua o mesmo, lembre-se que se o *lamb.dp* for 0, nosso população é determinística! Ou seja, a mesma função pode se prestar para simular ambos cenários.

×

R, uma população, crescimento exponencial, tempo discreto, tempo contínuo, estocasticidade ambiental

From:

http://ecovirtual.ib.usp.br/ -

Permanent link:

http://ecovirtual.ib.usp.br/doku.php?id=ecovirt:roteiro:den ind:di tdr passo

Last update: 2022/09/15 13:51

http://ecovirtual.ib.usp.br/
Printed on 2024/05/06 11:12