ATENÇÃO: ESTA PÁGINA É UMA VERSÃO ANTIGA DO ROTEIRO E ESTÁ DESATIVADA, PARA ACESSAR O ROTEIRO ATUAL ACESSE ESTE LINK
Podemos1) eliminar do modelo anterior o pressuposto de uma chuva de propágulos constante e fazer com que a colonização seja uma função do número de lugares ocupados. Em uma formulação simples desse modelo, a fonte de propágulos é unicamente interna (sistema fechado) e a probabilidade de colonização varia de forma linear à proporção de lugares ocupados.
Dessa forma, nosso modelo não terá mais uma probabilidade de colonização constante (pi), mas sim uma probabilidade de colonização dependente do número de manchas ocupadas:
pi=if ; onde i é uma constante que indica quanto aumenta a pi a cada nova mancha que é ocupada.
Portanto, quanto mais manchas ocupadas, maior a chance de colonização das manchas vazias. Substituindo pi na equação antiga temos:
dfdt=if(1−f)−pef
O cálculo da fração de manchas ocupadas no equilíbrio (F) também é modificado para:
F=1−pei
Vamos verificar isto simulando esta situação. Como no exercício anterior, criamos uma função no R para gerar a simulação. Como antes, esta função simplesmente sorteia eventos de colonização e extinção em cada mancha a cada intervalo de tempo, segundo as regras do modelo. Em seguida ela retorna um gráfico e as matrizes de ocupação das manchas em cada instante de tempo.
meta.inter=function(tf,cl,ln,fi,i,pe){ paisag=array(0,dim=c(ln,cl,tf)) paisag[,,1]=matrix(sample(c(1,0),cl*ln,prob=c(fi,1-fi), replace=T),ln,cl) resultado=numeric() for(t in 2:tf){ pc=i*sum(paisag[,,t-1])/(cl*ln) paisag[,,t][paisag[,,(t-1)]==1]<-sample(c(0,1),sum(paisag[,,t-1]),replace=T,prob=c(pe,1-pe)) paisag[,,t][paisag[,,(t-1)]==0]<-sample(c(0,1),cl*ln-sum(paisag[,,t-1]),replace=T,prob=c(1-pc,pc)) resultado[t-1]=sum(paisag[,,t])/(cl*ln) } F=1-(pe/i) plot(1:tf,c(fi,resultado),type="l",xlab="Tempo",ylab="Fração de manchas ocupadas", ylim=c(0,1),main=paste("Colonização Interna","\n cl=",cl," ln=",ln," fi=",fi," i=",i," pe=",pe),font.lab=2,lwd=2) abline(h=F,col=2,lwd=2,lty=2) return(paisag) }
E agora você pode simular o modelo com os valores que escolher para os argumentos da função, como:
meta.inter(tf=100,cl=10,ln=10,fi=.1,i=1,pe=0.5)
Brinque um pouco com o modelo fazendo variar os parâmetros do modelo e pense nas seguintes perguntas:
Para finalizar, uma última animaçãozinha, antes salvo o resultado de uma simulação em um objeto, por exemplo:
sim.int1 <- meta.inter(20,10,10,1, 0.4,0.2)
Agora passe a função abaixo para o programa
anima2=function(dados){ tf=dim(dados)[3] for(i in 1:tf){ image(dados[,,i], main=("Ocupação de manchas"),col=c("white","red"),bty="n",xaxt='n',yaxt='n') grid(dim(dados)[1],dim(dados)[2]) Sys.sleep(.2) } }
Agora é só rodar a função acima com o resultado da simulação:
anima2(dados=sim.int1)
{{tag>R uma_população metapopulações colonização_interna}