* [[en:ecovirt:roteiro:metap_duas:metap_coexrcmdr|{{:ecovirt:logorcmdr01.png?20|}}]]
* [[en:ecovirt:roteiro:metap_duas:metap_coexr|{{:ecovirt:rlogo.png?&20|}}]]
ATENÇÃO: ESTA PÁGINA É UMA VERSÃO ANTIGA DO ROTEIRO E ESTÁ DESATIVADA, PARA ACESSAR O ROTEIRO ATUAL
[[en:ecovirt:roteiro:metap_duas:metap_coexr|ACESSE ESTE LINK]]
====== Coexistência em Metapopulações - Roteiro em R ======
Sob quais condições as espécies podem coexistir? Há várias hipóteses, mas neste exercício vamos investigar o papel do regime de perturbação que uma área sofre, e das diferenças na capacidade de colonização das espécies. Estamos ainda enfatizando os processos de colonização e extinção, decritos pelos modelos de metapopulações.
Vamos partir do modelo [[en:ecovirt:roteiro:metap_uma:metap_cir|metapopulações com colonização interna]], que tem uma espécie cuja dinâmica da proporção de manchas já é bem conhecida de vocês((Veja o roteiro em[[en:ecovirt:roteiro:metap_uma:metap_circmdr|Colonização Interna]])):
$$\frac{df_1}{dt} = i_1f_1(1-f_1)- p_ef_1 $$
onde:
* f = fração de machas ocupadas
* pe = probabilidade de extinção por mancha
* i = taxa de incremento da probabilidade de colonização com o aumento de f
* A taxa de colonização, portanto, é o produto i.f, e varia com a fração de manchas ocupadas (quanto mais ocupação, mais propágulos).
Agora vamos acrescentar mais uma espécie ao sistema. Esta espécie será uma competidora fraca: só permanece em manchas desocupadas. Isto significa que as manchas disponíveis para sua colonização são apenas as vazias, e que ela é excluída se uma mancha que ocupa é colonizada pela outra espécie. A variação da fração de manchas ocupadas por esta espécie é definida como:
$$\frac{df_2}{dt} = i_2f_2(1-f_1-f_2) - i_1f_1f_2 - p_e f_2 $$
===== Fatos Importantes sobre o Modelo=====
==== Interpretação ====
A equação para a espécie 2 não tem nenhum coeficiente novo, apenas combinações diferentes deles:
* O termo $$i_2f_2(1-f_1-f_2)$$ indica que a fração de manchas colonizadas é proporcional à fração de manchas vazias, ou seja, sem nenhuma das duas espécies.
* O termo $$i_1f_1f_2$$ é a fração esperada de manchas ocupadas pela espécie 2 que são colonizadas pela espécie 1. Portanto, é a fração de manchas das quais a espécie 2 é excluída pela chegada da espécie 1.
* A taxa de extinção é igual à da espécie 1, por isso não tem subscrito.
==== Equilíbrio ====
A fração de manchas ocupadas pela espécie 1 no equilíbrio permanece
$$F_1 = 1 - \frac{p_e}{i_1}$$
E a fração de manchas ocupadas pela espécie 2 no equilíbrio é:
$$F_2 = \frac{p_e}{i_1} - \frac{i_1}{i_2} $$
Portanto, para que a metapopulação da espécie 2 seja viável neste modelo (F2>0), é preciso satisfazer a desigualdade
$$\frac{e}{i_1}~>~\frac{i_1}{i_2}$$
=== Opcional: De onde veio isto? ===
{{coexistencia.wxm|Aqui}} há um tutorial explicando as dedução da fração de manchas ocupadas pela espécie 2 no equilíbrio, que você pode executar com o programa [[http://maxima.sourceforge.net/|MAXIMA]].
A dedução dos valores em equilíbrio pede apenas manipulações algébricas muito simples. Se você ainda se assusta com matemática, tenha em mente que o essencial é compreender a lógica de cada passo de dedução. Para as manipulações em si, há programas de matemática simbólica que podem lhe ajudar, como o MAXIMA, que é de uso livre (([[http://maxima.sourceforge.net/authorization-letter.html|detalhes aqui]])).
Baixe e instale o programa com sua interface gráfica [[http://wxmaxima.sourceforge.net/wiki/index.php/Main_Page|wxMaxima]], abra o arquivo de comandos acima e tecle ''crtl-R'' para executar.
===== Simulação =====
==== Pseudocódigo ====
Vamos usar simulação computacional para gerar uma dinâmica estocástica que segue as regras do modelo de equações diferenciais. A simulação é bastante parecida com as usadas nos exercícios de metapopulações:
- Defina uma matriz com ln linhas e cl colunas. Cada célula da matriz é uma mancha.
- Defina as frações de manchas ocupadas pelas duas espécies (''fi1'' e ''fi2'') e ocupe as manchas ao acaso com estas proporções.
- Calcule as probabilidades de colonização das duas espécies, que é o produto ''pi = i*f''.
- Entre as manchas ocupadas, sorteie as que serão desocupadas, usando a probabilidade de extinção (''pe'').
- Entre as manchas desocupadas, sorteie as que serão ocupadas pela espécie 1, de acordo com a probabilidade de colonização.
- Entre as manchas desocupadas, sorteie as que serão ocupadas pela espécie 2, de acordo com a probabilidade de colonização. Nas manchas colonizadas pela espécie 1 (item anterior), a colonização pela espécie 2 não tem sucesso.
- Conte o número de manchas ocupadas por cada espécie e divida pela total de manchas para obter as frações ocupadas.
- Reitere a partir do passo 3 até o número de intervalos desejado.
==== Código ====
Usaremos novamente o ambiente R para realizar as simulações. Copie e cole os comandos abaixo para criar uma função em R que realiza a simulação e produz o gráfico de dinâmica de ocupação das manchas:
meta.comp<-function(tmax,ln,cl,fi1,fi2,i1,i2,pe,plot.eq=FALSE,D=0){
F1 <- 1-(pe/i1)
F2 <- pe/i1-i1/i2
if(F1<=0) F2 <- 1-(pe/i2)
Nt <- ln*cl
N <- floor(Nt*(1-D))
resultado=matrix(nrow=tmax,ncol=3)
n1 <- floor(fi1*N)
n2 <- floor(fi2*N)
antes <- sample(rep(c(2,1,0),c(n2,n1,N-(n1+n2))))
resultado[,1] <- 1:tmax
resultado[1,2:3] <- c(sum(antes==1),sum(antes==2))/N
for(t in 2:tmax){
depois <- rep(0,N)
pi1=i1*sum(antes==1)/Nt
pi2=i2*sum(antes==2)/Nt
depois[antes==1]<-sample(c(0,1),sum(antes==1),replace=T,prob=c(pe,1-pe))
depois[antes==2]<-sample(c(0,2),sum(antes==2),replace=T,prob=c(pe,1-pe))
depois[antes==0] <- sample(c(0,2),sum(antes==0),replace=T,prob=c(1-pi2,pi2))
d1<-sample(c(0,1),sum(antes!=1),replace=T,prob=c(1-pi1,pi1))
depois[antes!=1][d1==1] <- 1
resultado[t,2:3]=c(sum(depois==1),sum(depois==2))/Nt
antes <- depois
}
x11()
plot(1:tmax,resultado[,2],type="l",xlab="Tempo",ylab="Fração de manchas ocupadas",
ylim=c(0,1),main=paste("Competição com Colonização Interna","\n cl=",cl," ln=",ln," fi1=",fi1," fi2=",
fi2,"\n i1=",i1," i2=",i2," pe=",pe," D=",D),font.lab=2,lwd=2, col="red")
lines(1:tmax,resultado[,3],col="blue", lwd=2)
if(plot.eq==T){
abline(h=F1,col="red",lwd=1.5,lty=2)
if(F2>0)abline(h=F2,col="blue",lwd=1.5,lty=2)
if(F2<0)abline(h=0, col="blue",lwd=1.5,lty=2)
}
if(D>0)abline(h=1-D,lty=2)
legend("topright", c("Melhor competidora", "Pior competidora"),col=c("red","blue"),lty=1)
invisible(resultado)
}
Os argumentos da função são o número de linhas e colunas da matriz (''ln'', ''cl''), e o número de intervalos de tempo para reiterar a simulação (''tmax''), fração inicial de manchas ocupadas por cada espécie (''fi1'', ''fi2''), e os parâmetros do modelo (''i1'', ''i2'', ''pe'' ) ((Há um último argumento, ''D'', que só usaremos no exercício de [[en:ecovirt:roteiro:metap_duas:metap_dhabrcmdr|Destruição de Habitat]]. Não é preciso especificar nenhum valor para ele por ora.)).
==== Qual o segredo da Coexistência ? ====
{{:ecovirt:roteiro:metap_duas:osegredocoex.jpg?200 |Qual o segredo de Tostines?}}
Comece com uma simulação com estes parâmetros:
meta.comp(tmax=100,cl=100,ln=100,fi1=0.1,fi2=0.4,i1=0.4,i2=0.5,pe=0.25, plot.eq=FALSE)
Qual o valor das frações de manchas ocupadas em equilíbrio? Vamos calcular:
##Calcule o valor de F1
F1=1-0.25/0.4
F1
## Calcule F2
F2 <- 0.25/0.4-0.4/0.5
F2
E podemos acrescentar as linhas destes valores no gráfico
##Adicione a linha de F1 ao grafico
abline(h=F1, col="red", lty=2)
##Adicione a linha de F2 ao grafico
abline(h=F2, col="red", lty=2)
Nesta simulação a metapopulação da espécie 2 se extingue. Verifique se os valores teóricos de F1 e F2 são coerentes com esta conclusão.
=== Balanço Competição x Colonização ===
O parâmetro //**D**// no modelo controla a quantidade de habitat destruído no início da simulação. Não vamos, ainda, mostrar nossa imensa capacidade destrutiva, isso faz parte do próximo roteiro. Por enquanto deixe o parâmetro sempre em //zero//.
Definimos a espécie 2 como uma pior competidora. Isto a condena sempe à extinção? Estude o efeito de diferenças nas habilidades de colonização sobre a coexistência. Para isto, faça variar o parâmetro de colonização da espécie 2, mantendo os demais constantes. Identifique as condições de coexistência, e de extinção de cada espécie.
Inicie com os seguintes parâmetros:
meta.comp(tmax=100, ln=20, cl=20, fi1=0.05, fi2=0.05, i1=0.1, i2=0.1, pe=0.05)
Agora mantenha tudo constante e mude apenas o parâmetro i2 para:
- de 0.2 até 1 a cada 0.1
- 10
- 100
Interprete os resultados.
== DICAS ==
* Para facilitar a comparação, você pode criar espaço para 4 gráficos na mesma janela do R com o comando ''par(mfrow=c(2,2))''.
* Ao executar a função de simulação, mude o argumento ''plot.eq=FALSE'' para ''plot.eq=TRUE'' e você terá as linhas dos valores de equilíbrio.
* A condição para persistência da espécie 2 é uma desigualdade que envolve a razão i1/i2, que expressa as diferenças nas habilidades de colonização das duas espécies.
* Para voltar a fazer um gráfico por janela digite o código: ''par(mfrow=c(1,1))''.
=== Regime de Extinção ===
Vamos começar a simulação com uma nova combinação de parâmetros, em que espécie 2 tem o triplo de capacidade de colonização que a espécie 1:
meta.comp(tmax=100,cl=100,ln=100,fi1=0.1,fi2=0.1,i1=0.3,i2=0.9,pe=0.1, plot.eq=TRUE)
Ainda assim, a metapopulação da espécie 2 se extingue. Faça variar a probabilidade de extinção mantendo os demais parâmetros constantes, para investigar o efeito do regime de perturbação sobre este resultado.
Muitas vezes para conferir se realmente o sistema tende ao equilíbrio teórico é necessário aumentar o tempo da simulação.
- aumente o //pe// para 0.07
- varie o //pe// de 0.08 a 0.14 a cada 0.02
Caso não chegue ao equilíbrio aumente o //tmax// para 500 (veja dica anterior)
=== Proporção de manchas ocupadas inicial ===
Ocupância pode ser definida como a proporção de manchas disponíveis ocupadas pela espécie. No nosso modelo a ocupância inicial das espécies é definida pelos parâmetros fi1 e fi2
- produza simulações para verificar se esses parâmetros alteram o destino das populações
- as trajetórias das simulações varia com valores de ocupância diferentes? E a coexistência a longo prazo?
===== Perguntas =====
- Que atributos da espécie competitivamente inferior propiciam coexistência com a espécie competitivamente superior? Interprete em termos biológicos e apresente as simulações para embasar sua argumentação.
- Qual a relação entre coexistência e perturbação neste modelo? Pense em consequências teóricas e aplicadas.
- Qual o efeito da espécie 2 sobre a espécie 1 neste modelo? Demonstre isso de forma bastante clara em uma simulação.
- Qual o valor de equilíbrio da espécie 2 quando a espécie 1 não está presente?
Junte as respostas e as figuras finais das simulações e encaminhe ao monitor.
===== Referências =====
* [[http://www.sciencedirect.com/science/article/pii/0040580980900593|Hastings, A. (1980)]] Disturbance, coexistence, history and competition for space. Theoretical Population Biology, 18:363–373.
* Stevens, M.H.H. (2009) A primer in ecology with R. New York, Springer.
/**
{{:ecovirt:roteiro:metap_duas:hastings_80_theorpopbiol.pdf|Hastings, A. (1980)}}
{{:ecovirt:roteiro:metap_duas:stevens_cap9.pdf|Stevens, M.H.H. (2009)}}
*/
{{tag>R multipopulações metapopulações competição}}