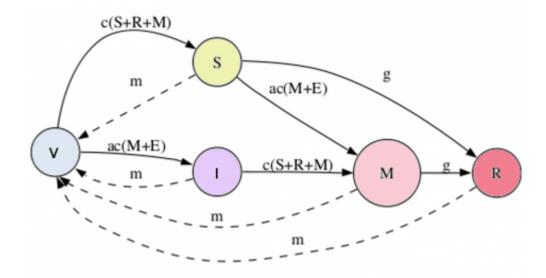


Nicho Sucessional - Roteiro no Ecovirtual

Normalmente a competição entre as espécies é interpretada como uma resposta tudo ou nada (acontece ou não acontece) instantânea. Entretanto, observando a natureza perceberemos que plantas com alta capacidade de colonização geralmente apresentam altas taxas metabólicas (respiração, fotossíntese e alocação de tecido reprodutivo). Essas altas taxas possibilitam que as plantas cresçam e se reproduzam mais rapidamente, o que pode conferir a elas uma vantagem adicional na interação competitiva. Imagine uma floresta, onde uma clareira foi aberta por uma árvore caída e que ambas espécies, a melhor competidora e a melhor dispersora, cheguem ao mesmo tempo. Nessa situação, imaginar que a melhor competidora irá excluir a outra imediatamente não parece muito razoável, simplesmente porque não há ainda a limitação de recurso. Por outro lado, a espécie que tiver

maior taxa de crescimento poderá se reproduzir antes que a limitação de recurso ocorra e ela seja excluída por competição.

Modelo de Pacala e Rees


Esse período, antes da redução de recurso no ambiente, cria um nicho efêmero que foi chamado por Pacala e Rees (1998) de nicho de sucessão. Esses autores desenvolveram um modelo simples para testar suas ideias. Para começar eles estabeleceram cinco estados possíveis no sistema:

- 1. Vago: nenhuma das espécies
- 2. Inicial: ocupado apenas pelas espécies da sucessão inicial
- Sensível: ocupado pela espécie tardia, mas suscetível a invasão da inicial pois o recurso ainda é abundante
- 4. Misto: ocupado por ambas espécies, a caminho da exclusão competitiva
- 5. Resistente: ocupado apenas pela tardia e resistente a invasão

Dado esses estados o processo de sucessão teria algumas possibilidades de trajetórias:

- VAGO → INICIAL → MISTO → RESISTENTE
- VAGO → SENSÍVEL → MISTO → RESISTENTE
- VAGO → SENSÍVEL → RESISTENTE

Vamos criar nosso modelo. Para simplificar, ao invés de modelarmos cada uma das espécies, vamos modelar o estado e suas transições de uma forma similar que modelamos os estados dos indivíduos em uma população: lembra dos modelos matriciais de Leslie e Leftockvich da primeira aula?! Veja o esquema abaixo para entender as transições de estado:

Nesse modelo temos quatro parâmetros c, α , m, γ :

- c: taxa de colonização base
- α (a): taxa colonização relativa à espécie de sucessão inicial
- m: taxa de mortalidade ou distúrbio
- γ (g): taxa de exclusão competitiva

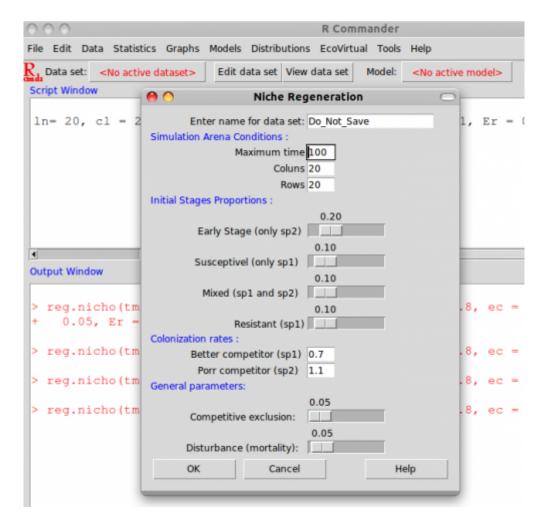
Com esses quatro parâmetros é possível modelar a variação da proporção de estados ao longo do tempo, com a expressão que aparecem na transição da figura. Linhas cheias indicam expressão de aumento na proporção e linhas interrompidas diminuições. Por exemplo, a variação no estado SENSÍVEL é dada por:

$$$$ (dS)/dt = [c(S + R + M)]V - [\alpha c(M+E)]S - gS - mS $$$$

Usando o EcoVirtual

Para prosseguir você deve ter o ambiente **R** com os pacotes **Rcmdr** e **Ecovirtual** instalados e carregados. Se você não tem e não sabe como ter, consulte a página de Instalação.

Caso já tenha o R e pacotes instalados


Carregue o pacote principal **RcmdrPlugin.EcoVirtual** pelo menu do R **Pacotes > Carregar Pacotes**, ou pela linha de comando com o código:

library("RcmdrPlugin.EcoVirtual")

Vamos agora usar uma função para modelar a dinâmica de sucessão desse modelo. Abra o menu do

http://ecovirtual.ib.usp.br/ Printed on 2025/05/30 08:11

EcoVirtual no Rcmdr: **EcoVirtual>Multi species> Niche regeneration...** A seguinte janela de menu se abrirá:

Segue abaixo a descrição dos parâmetros do modelo:

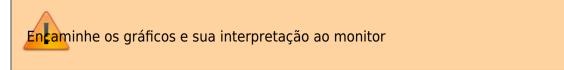
opção	parâmetro	definição
data set	· .	guarda os resultados
Simulation Arena Condition	Parâmetros básicos da simulação	
Maximum time	tmax	Número de iterações da simulação
columns	cl	número de colunas de habitat da paisagem
rows	rw	número de linhas de habitat da paisagem
Initial Stages Proportions	Proporção inicial dos estádios das manchas	
Early Stage	er	proporção de manchas ocupadas no inicio pela sp2
Susceptive	SC	proporção inicial com a <i>sp1</i> que ainda pode ser colonizada tb por <i>sp2</i>
Mixed	mx	proporção inicial com ambas espécies
Resistante	rs	proporção inicial com a <i>sp1</i> que não pode mais ser colonizada pela <i>sp2</i>
Colonization rates	Parâmetros de colonização	
Better competitor	c1	coeficiente de colonização da sp1
Poor competitor	c2	coeficiente de colonização da sp2
General Parameters	Parâmetros gerais	
Competitive exclusion	ec	probabilidade de transição do estágio Sc e Mx para o Rs

⁻ http://ecovirtual.ib.usp.br/

Last update: 2016/05/10

opção	parâmetro	definição
Disturbance	Iast I	proporção de manchas de todos os estádios que fica
		vaga

Testando com uma taxa de exclusão competitiva alta e baixo distúrbio.


```
tmax=50,
rw=100,
cl=100,
c1=0.2,
c2=0.8,
ec=0.5,
dst=0.04,
er=0.08,
sc=0.02,
mx=0,
rs=0,
```

Vamos agora simular alguns cenários.

- 1. diminuição da exclusão competitiva para 10% (ec=0.1)
- 2. mantenha a **ec** em 0.1 e aumente o distúrbio para 10% (dst=0.1)
- 3. agora coloque ambas as espécies com mesma taxa de colonização máxima (c1=0.4, c2=0.4),

Interprete os cenários acima associando a trajetória do sistema a:

- sucessão ecológica
- nicho sucessional
- distúrbio intermediário
- competição

Perguntas

- 1. Produza um texto curto interpretando os cenários acima de modo integrado (não há necessidade de explicar separadamente cada um), associando suas trajetórias a:
 - sucessão ecológica
 - nicho sucessional
 - o distúrbio intermediário
 - competição
- 2. Modifique o esquema que aparece no inicio deste roteiro de forma a produzir um cenários que contenha apenas a demanda conflitante (tradeoff) competição x colonização. Explique.
- 3. A coexistência é possível se consideramos apenas o efeito do nicho sucessional? Use uma simulação para justificar sua resposta.

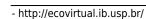
Printed on 2025/05/30 08:11 http://ecovirtual.ib.usp.br/

×

Para saber mais

- Pacala, S. & M. Rees. 1998. Models suggesting field experiments to test two hypotheses explaining successional diversity. The American Naturalist 152(2): 729:737.
- Stevens, M.H.H. (2009) A primer in ecology with R. New York, Springer. capítulo 9

RCMDR, comunidades, sucessão


From:

http://ecovirtual.ib.usp.br/ -

Permanent link:

http://ecovirtual.ib.usp.br/doku.php?id=ecovirt:roteiro:sucess:nich_regrcmdr

Last update: 2016/05/10 07:19

