2025/08/11 03:22 1/4 Estrutura

Populações

Estrutura

Padrão de Pontos

Dinâmica

O estudo da dinâmica de populações visa entender as variações nas populações ao longo do tempo e quais fatores e processos determinam essas oscilações. A dinâmica pode ser estudada para qualquer atributo da população, o mais comum é pensarmos no número de indivíduos variando temporalmente. Outros exemplos são os estudos das variações nas estruturas espacial, etária ou genética das populações. A demografia é comumente associada ao estudo da dinâmica de população humana, mas pode ser associada também ao estudo da variação no tamanho populacional de outros organismos.

Modelos sem dependência da densidade

Descrevem o crescimento de uma população a uma taxa constante. Portanto, não há nenhuma regulação associada ao seu crescimento. São os modelos de dinâmica populacional mais simples, e que servem como base para outros modelos mais complexos,

Modelos básicos em tempo discreto e contínuo

The Essential Exponential For the Plane of Our Plane ...

Aqui você vai conhecer os modelos básicos de dinâmica denso-independente. Vai também entender a diferença entre um modelo em tempo discreto e contínuo, e como fazer a equivalência entre eles. • Roteiro Modelos Básicos: tempo discreto e contínuo

Estocasticidade Ambiental

O ambiente não é constante, o que deve afetar as taxas de crescimento populacional. Veja aqui como se comportam os modelos da seção anterior quando a taxa de crescimento da população muda ao longo do tempo. Este efeito é a estocasticidade ambiental.

Roteiro Estocasticidade Ambiental

Estocasticidade Demográfica

As taxas vitais não são as mesmas para todos os indivíduos da população. Os efeitos dessa variabilidade intrapopulacional são chamados estocasticidade demográfica. Veja aqui o comportamento de modelos simples que incorporam esse efeito.

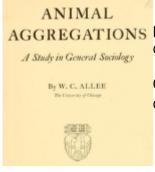
• Roteiro Estocasticidade Demográfica

Modelos com dependência da densidade

Esses modelos prevem que a taxa com que a população cresce é influenciada pelo tamanho da população. Por exemplo, pode haver restrição ao aumento da população pela sua lotação e restrição de recursos, ou a população pode ter sua taxa de mortalidade diminuída por algum efeito de agrupamento. Apresentamos aqui dois modelos que representam esses exemplos.

Modelo logístico

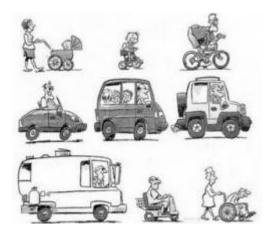
http://ecovirtual.ib.usp.br/ Printed on 2025/08/11 03:22


2025/08/11 03:22 3/4 Estrutura

Nesse tópico modelamos populações que tem crescimento controlado pela densidade da população. É um modelo simples que prevê uma redução no crescimento da população conforme aumenta a densidade da população, seja por diminuir o nascimento ou aumentar a taxa de mortalidade per capita. Apesar de não modelar explicitamente a restrição de recursos, é o mecanismo que está implicitamente relacionado ao modelo.

Roteiro Modelo logístico

Efeito Allee



Uma variante do modelo logístico acima é incluir um tamanho mínimo para que a população seja viável. Abaixo desse tamanho a população declina, e acima ela cresce com denso-dependência.

Com a inclusão do efeito Allee a logística passa a ter mais de um ponto de equilíbrio, com uma transição brusca entre eles.

• Efeito Allee

Populações estruturadas

Modelos que classificam os indivíduos de uma população estádios de vida, que podem ser classes de idade ou fases do desenvolvimento. A população muda devido à permanência na classe, mudança de classe ou morte.

Matriz de Leslie

O crescimento de uma população com estrutura etária pode ser projetado utilizando-se álgebra matricial. As matrizes de Leslie contêm informação sobre as taxas de natalidade e mortalidade de diferentes classes etárias de uma população e são uma forma robusta de calcular o crescimento populacional e fazer projeções da população para diferentes cenários. Uma generalização da matriz de Leslie ocorre quando a

população é classificada por estágios (matriz de Leftkovicth), onde um indivíduo de uma dada classe pode, além de morrer, crescer e reproduzir, permanecer no mesmo estágio ao longo dos ciclos de tempo. Nessa generalização, as taxas vitais básicas (crescimento, sobrevivência e reprodução) estão embutidas nos valores das matrizes de transição onde computamos o efeito que cada classe estado (ou de tamanho) exerce nas outras no ciclo de tempo seguinte. O objetivo desse exercício é entender como podemos tratar populações estruturadas com os modelos de matrizes.

• Roteiro Matriz de Leslie

Denso-Dependência em Populações Estruturadas

Um exemplo simples de modelo de população estruturada com crescimento dependente da densidade.

• Denso-Dependência em Populações Estruturadas

Sensibilidade e Elasticidade

Um instrumento importante nas análises matriciais é entender como as probabilidades de transição e permanência de cada classe afeta o crescimento da população. Saber quais as taxas vitais que são mais importantes para a estabilização da população ou para o seu crescimento é uma ferramenta poderosa, tanto para o entendimento de diferentes estratégicas de história de vida como para o manejo de populações ameaçadas ou para o uso sustentável de recursos vegetais....

• Sensibilidade e Elasticidade

From:

http://ecovirtual.ib.usp.br/ -

Permanent link:

http://ecovirtual.ib.usp.br/doku.php?id=ecovirt:roteiro:den dep:roteiros&rev=1628018610

Last update: **2021/08/03 16:23**

^